Challenges in operating and testing loop heat pipes in 500–700 K temperature ranges

IF 0.8 Q4 THERMODYNAMICS Archives of Thermodynamics Pub Date : 2023-07-20 DOI:10.24425/ather.2022.141978
P. Szymański
{"title":"Challenges in operating and testing loop heat pipes in 500–700 K temperature ranges","authors":"P. Szymański","doi":"10.24425/ather.2022.141978","DOIUrl":null,"url":null,"abstract":"The potential applications of loop heat pipes (LHPs) are the nuclear power space systems, fuel cell thermal management systems, waste heat recovery systems, medium temperature electronic systems, medium temperature military systems, among others. Such applications usually operate in temperature ranges between 500–700 K, hence it is necessary to develop an LHP system that will meet this requirement. Such a thermal management device require to meet various technical problems and challenges currently existing in the development of LHP working in medium temperatures, including: (1) selection of appropriate working fluid; (2) selection of appropriate LHP construction material; (3) construction of suitable test rig capable of testing at elevated temperatures; (4) development of new testing methods. Currently, there are no proven working fluids that can be used in LHPs in medium temperature ranges. Water can be applicable only at temperatures up to 570 K. Caesium can be applicable at temperatures above 670 K. Organic fluids usually tend to generate non-condensable gasses and/or decompose at elevated temperatures and their viscosity dramatically increases. For halides, most of them are very reactive or toxic and their full property data are not available or the majority of the physical properties are predicted, also live tests and their environmental impact data are not adequate. As for casing/LHP construction material, there are no full chemical compatibility tables with most of the medium temperature working fluids and the reactivity of fluids significantly limits the potential materials. Also, testing such an LHP is an endeavour as the reactivity of medium temperature fluids and the use of obscure metals create new chal-∗","PeriodicalId":45257,"journal":{"name":"Archives of Thermodynamics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Thermodynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24425/ather.2022.141978","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 2

Abstract

The potential applications of loop heat pipes (LHPs) are the nuclear power space systems, fuel cell thermal management systems, waste heat recovery systems, medium temperature electronic systems, medium temperature military systems, among others. Such applications usually operate in temperature ranges between 500–700 K, hence it is necessary to develop an LHP system that will meet this requirement. Such a thermal management device require to meet various technical problems and challenges currently existing in the development of LHP working in medium temperatures, including: (1) selection of appropriate working fluid; (2) selection of appropriate LHP construction material; (3) construction of suitable test rig capable of testing at elevated temperatures; (4) development of new testing methods. Currently, there are no proven working fluids that can be used in LHPs in medium temperature ranges. Water can be applicable only at temperatures up to 570 K. Caesium can be applicable at temperatures above 670 K. Organic fluids usually tend to generate non-condensable gasses and/or decompose at elevated temperatures and their viscosity dramatically increases. For halides, most of them are very reactive or toxic and their full property data are not available or the majority of the physical properties are predicted, also live tests and their environmental impact data are not adequate. As for casing/LHP construction material, there are no full chemical compatibility tables with most of the medium temperature working fluids and the reactivity of fluids significantly limits the potential materials. Also, testing such an LHP is an endeavour as the reactivity of medium temperature fluids and the use of obscure metals create new chal-∗
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在500-700 K温度范围内操作和测试环路热管的挑战
环路热管(LHP)的潜在应用包括核能空间系统、燃料电池热管理系统、废热回收系统、中温电子系统、中温度军事系统等。此类应用通常在500–700 K之间的温度范围内运行,因此有必要开发满足这一要求的LHP系统。这种热管理装置需要满足目前在中等温度下工作的LHP开发中存在的各种技术问题和挑战,包括:(1)选择合适的工作流体;(2) 选择合适的LHP建筑材料;(3) 建造能够在高温下进行测试的合适试验台;(4) 开发新的测试方法。目前,还没有经过验证的工作流体可用于中等温度范围的LHP。水只能在570 K以下的温度下使用。铯可以在670 K以上的温度下应用。有机流体通常会产生不凝气体和/或在高温下分解,其粘度会急剧增加。对于卤化物,它们中的大多数都具有很强的反应性或毒性,它们的全部性质数据不可用,或者大多数物理性质都是预测的,现场测试和环境影响数据也不充分。至于套管/LHP建筑材料,大多数中温工作流体没有完整的化学相容性表,流体的反应性极大地限制了潜在材料。此外,测试这种LHP是一项努力,因为中温流体的反应性和不知名金属的使用创造了新的chal-*
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Archives of Thermodynamics
Archives of Thermodynamics THERMODYNAMICS-
CiteScore
1.80
自引率
22.20%
发文量
0
期刊介绍: The aim of the Archives of Thermodynamics is to disseminate knowledge between scientists and engineers interested in thermodynamics and heat transfer and to provide a forum for original research conducted in Central and Eastern Europe, as well as all over the world. The journal encompass all aspect of the field, ranging from classical thermodynamics, through conduction heat transfer to thermodynamic aspects of multiphase flow. Both theoretical and applied contributions are welcome. Only original papers written in English are consider for publication.
期刊最新文献
Thermal simulation of a continuous casting process subjected to water-sprays cooling Reduction of carbon footprint from spark ignition power facilities by the dual approach Modeling of the internal combustion engine cooling system Challenges in operating and testing loop heat pipes in 500–700 K temperature ranges Simplified exergy analysis of ship heating systems with different heat carriers and with the recovery of waste heat
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1