Zhaohong Sun, Wei Dong, Jinlong Shi, K. He, Zhengxing Huang
{"title":"Attention-Based Deep Recurrent Model for Survival Prediction","authors":"Zhaohong Sun, Wei Dong, Jinlong Shi, K. He, Zhengxing Huang","doi":"10.1145/3466782","DOIUrl":null,"url":null,"abstract":"Survival analysis exhibits profound effects on health service management. Traditional approaches for survival analysis have a pre-assumption on the time-to-event probability distribution and seldom consider sequential visits of patients on medical facilities. Although recent studies leverage the merits of deep learning techniques to capture non-linear features and long-term dependencies within multiple visits for survival analysis, the lack of interpretability prevents deep learning models from being applied to clinical practice. To address this challenge, this article proposes a novel attention-based deep recurrent model, named AttenSurv, for clinical survival analysis. Specifically, a global attention mechanism is proposed to extract essential/critical risk factors for interpretability improvement. Thereafter, Bi-directional Long Short-Term Memory is employed to capture the long-term dependency on data from a series of visits of patients. To further improve both the prediction performance and the interpretability of the proposed model, we propose another model, named GNNAttenSurv, by incorporating a graph neural network into AttenSurv, to extract the latent correlations between risk factors. We validated our solution on three public follow-up datasets and two electronic health record datasets. The results demonstrated that our proposed models yielded consistent improvement compared to the state-of-the-art baselines on survival analysis.","PeriodicalId":72043,"journal":{"name":"ACM transactions on computing for healthcare","volume":"2 1","pages":"1 - 18"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM transactions on computing for healthcare","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3466782","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
Survival analysis exhibits profound effects on health service management. Traditional approaches for survival analysis have a pre-assumption on the time-to-event probability distribution and seldom consider sequential visits of patients on medical facilities. Although recent studies leverage the merits of deep learning techniques to capture non-linear features and long-term dependencies within multiple visits for survival analysis, the lack of interpretability prevents deep learning models from being applied to clinical practice. To address this challenge, this article proposes a novel attention-based deep recurrent model, named AttenSurv, for clinical survival analysis. Specifically, a global attention mechanism is proposed to extract essential/critical risk factors for interpretability improvement. Thereafter, Bi-directional Long Short-Term Memory is employed to capture the long-term dependency on data from a series of visits of patients. To further improve both the prediction performance and the interpretability of the proposed model, we propose another model, named GNNAttenSurv, by incorporating a graph neural network into AttenSurv, to extract the latent correlations between risk factors. We validated our solution on three public follow-up datasets and two electronic health record datasets. The results demonstrated that our proposed models yielded consistent improvement compared to the state-of-the-art baselines on survival analysis.