Xueyu Du, Maosong Wang, Wen-qi Wu, Pei-yuan Zhou, Jia-rui Cui
{"title":"State transformation extended Kalman filter–based tightly coupled strapdown inertial navigation system/global navigation satellite system/laser Doppler velocimeter integration for seamless navigation of unmanned ground vehicle in urban areas","authors":"Xueyu Du, Maosong Wang, Wen-qi Wu, Pei-yuan Zhou, Jia-rui Cui","doi":"10.1177/17298806231158462","DOIUrl":null,"url":null,"abstract":"With the rapid development of unmanned ground vehicle industry, how to achieve continuous, reliable, and high-accuracy navigation becomes very important. At present, the integrated navigation with global navigation satellite system and strapdown inertial navigation system is the most mature and effective navigation technology for unmanned ground vehicle. However, this technique depends on the signal accuracy of global navigation satellite system. When the receiver cannot capture four or more satellite signals for a long time or the satellite completely invalid, it cannot provide accurate navigation and positioning information for the unmanned ground vehicle. Therefore, this article combine the observation information of strapdown inertial navigation system, global navigation satellite system, and laser Doppler velocimeter to propose a high-precision seamless navigation technique of unmanned ground vehicle based on state transformation extended Kalman filter. Under different land vehicle driving environments and global navigation satellite system signal quality conditions, the seamless navigation technique is evaluated through global navigation satellite system interruption simulation and land vehicle experiments. The experimental results show that the strapdown inertial navigation system/global navigation satellite system/laser Doppler velocimeter tightly coupled integration seamless navigation has good environmental adaptability and reliability and can maintain high navigation accuracy under high frequency global navigation satellite system–signal blockage conditions in urban areas.","PeriodicalId":50343,"journal":{"name":"International Journal of Advanced Robotic Systems","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Robotic Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/17298806231158462","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 2
Abstract
With the rapid development of unmanned ground vehicle industry, how to achieve continuous, reliable, and high-accuracy navigation becomes very important. At present, the integrated navigation with global navigation satellite system and strapdown inertial navigation system is the most mature and effective navigation technology for unmanned ground vehicle. However, this technique depends on the signal accuracy of global navigation satellite system. When the receiver cannot capture four or more satellite signals for a long time or the satellite completely invalid, it cannot provide accurate navigation and positioning information for the unmanned ground vehicle. Therefore, this article combine the observation information of strapdown inertial navigation system, global navigation satellite system, and laser Doppler velocimeter to propose a high-precision seamless navigation technique of unmanned ground vehicle based on state transformation extended Kalman filter. Under different land vehicle driving environments and global navigation satellite system signal quality conditions, the seamless navigation technique is evaluated through global navigation satellite system interruption simulation and land vehicle experiments. The experimental results show that the strapdown inertial navigation system/global navigation satellite system/laser Doppler velocimeter tightly coupled integration seamless navigation has good environmental adaptability and reliability and can maintain high navigation accuracy under high frequency global navigation satellite system–signal blockage conditions in urban areas.
期刊介绍:
International Journal of Advanced Robotic Systems (IJARS) is a JCR ranked, peer-reviewed open access journal covering the full spectrum of robotics research. The journal is addressed to both practicing professionals and researchers in the field of robotics and its specialty areas. IJARS features fourteen topic areas each headed by a Topic Editor-in-Chief, integrating all aspects of research in robotics under the journal''s domain.