P. Shi, L. Wang, Ü. Niinemets, Yabing Jiao, K. Niklas
{"title":"Estimation of stomatal density of leaves with hierarchical reticulate venation","authors":"P. Shi, L. Wang, Ü. Niinemets, Yabing Jiao, K. Niklas","doi":"10.1080/23818107.2022.2156600","DOIUrl":null,"url":null,"abstract":"ABSTRACT Stomatal density (SD) is important to photosynthetic rates. However, it is time-consuming to measure SD. Here, we provide a method for estimating SD based on the scaling relationship between SD and mean nearest neighbour distance (MNND) of sampled stomatal centres. 397 leaves from eight Magnoliaceae species were used for this study. For each leaf, three 1.2 mm × 0.9 mm lamina sections, positioned equidistantly between leaf left margin and midrib, were examined (in total 1189 sections). SD and MNND were calculated for each section. Regression protocols were used to test for a negative SD vs. MNND scaling relationship at the species and family levels. Additionally, 10 to 200 stomata from each section were randomly sampled to check for the prediction accuracy of SD using the SD vs MNND scaling relationship. There were significant differences in SD among the different lamina positions for 7 of 8 species. The inverse SD vs MNND scaling relationship was validated at the species and family levels. For the pooled data, the MNND values using 14, 25 and 50 stomata accounted for >80%, 85% and 90% of the variance in SD on a log-log scale, respectively. SD was characterized by high interspecific variability, and within-leaf variability, decreasing from the position near the midrib to that near the leaf margin. SD scaled inversely with MNND for the eight species. Thus, using the rapidly estimated trait MNND significantly simplifies and expedites the estimation of SD.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/23818107.2022.2156600","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2
Abstract
ABSTRACT Stomatal density (SD) is important to photosynthetic rates. However, it is time-consuming to measure SD. Here, we provide a method for estimating SD based on the scaling relationship between SD and mean nearest neighbour distance (MNND) of sampled stomatal centres. 397 leaves from eight Magnoliaceae species were used for this study. For each leaf, three 1.2 mm × 0.9 mm lamina sections, positioned equidistantly between leaf left margin and midrib, were examined (in total 1189 sections). SD and MNND were calculated for each section. Regression protocols were used to test for a negative SD vs. MNND scaling relationship at the species and family levels. Additionally, 10 to 200 stomata from each section were randomly sampled to check for the prediction accuracy of SD using the SD vs MNND scaling relationship. There were significant differences in SD among the different lamina positions for 7 of 8 species. The inverse SD vs MNND scaling relationship was validated at the species and family levels. For the pooled data, the MNND values using 14, 25 and 50 stomata accounted for >80%, 85% and 90% of the variance in SD on a log-log scale, respectively. SD was characterized by high interspecific variability, and within-leaf variability, decreasing from the position near the midrib to that near the leaf margin. SD scaled inversely with MNND for the eight species. Thus, using the rapidly estimated trait MNND significantly simplifies and expedites the estimation of SD.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.