Advantages of Physically Based Flood Frequency Analysis with Long-Term Simulations for Iowa

IF 2.2 4区 工程技术 Q2 ENGINEERING, CIVIL Journal of Hydrologic Engineering Pub Date : 2022-12-01 DOI:10.1061/(asce)he.1943-5584.0002230
Alexander Michalek, F. Quintero, G. Villarini, W. Krajewski
{"title":"Advantages of Physically Based Flood Frequency Analysis with Long-Term Simulations for Iowa","authors":"Alexander Michalek, F. Quintero, G. Villarini, W. Krajewski","doi":"10.1061/(asce)he.1943-5584.0002230","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":54800,"journal":{"name":"Journal of Hydrologic Engineering","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrologic Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1061/(asce)he.1943-5584.0002230","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 2
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于物理的洪水频率分析与爱荷华州长期模拟的优势
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Hydrologic Engineering
Journal of Hydrologic Engineering 工程技术-工程:土木
CiteScore
4.60
自引率
4.20%
发文量
83
审稿时长
4.5 months
期刊介绍: The Journal of Hydrologic Engineering disseminates information on the development of new hydrologic methods, theories, and applications to current engineering problems. The journal publishes papers on analytical, numerical, and experimental methods for the investigation and modeling of hydrological processes.
期刊最新文献
A Note on the Time of Concentration Building Synthetic Bathymetries for Unsurveyed Reservoirs: Hydrologically Conditioned Cubic Spline Interpolation Hydrologic Conservatism as a Rationale for Selecting NRCS Initial Abstraction Ratio Manual Sensitivity Analysis to Enhance a Previously PEST-Calibrated Shallow Aquifer and Aquitard Breach Model Geographical Transferability of Pretrained K-Means Clustering–Artificial Neural Network Model for Disaggregation of Rainfall Data in an Indian Monsoon Climate
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1