Dynamic portfolio selection with linear control policies for coherent risk minimization

IF 3.7 4区 管理学 Q2 OPERATIONS RESEARCH & MANAGEMENT SCIENCE Operations Research Perspectives Pub Date : 2023-01-01 DOI:10.1016/j.orp.2022.100262
Yuichi Takano , Jun-ya Gotoh
{"title":"Dynamic portfolio selection with linear control policies for coherent risk minimization","authors":"Yuichi Takano ,&nbsp;Jun-ya Gotoh","doi":"10.1016/j.orp.2022.100262","DOIUrl":null,"url":null,"abstract":"<div><p>This paper is concerned with a linear control policy for dynamic portfolio selection. We develop this policy by incorporating time-series behaviors of asset returns on the basis of coherent risk minimization. Analyzing the dual form of our optimization model, we demonstrate that the investment performance of linear control policies is directly connected to the intertemporal covariance of asset returns. To mitigate overfitting to training data (i.e., historical asset returns), we apply robust optimization. For this optimization, we prove that the worst-case coherent risk measure can be decomposed into the empirical risk measure and the penalty terms. Numerical results demonstrate that when the number of assets is small, linear control policies deliver good out-of-sample investment performance. When the number of assets is large, the penalty terms improve the out-of-sample investment performance.</p></div>","PeriodicalId":38055,"journal":{"name":"Operations Research Perspectives","volume":"10 ","pages":"Article 100262"},"PeriodicalIF":3.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Operations Research Perspectives","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214716022000331","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 1

Abstract

This paper is concerned with a linear control policy for dynamic portfolio selection. We develop this policy by incorporating time-series behaviors of asset returns on the basis of coherent risk minimization. Analyzing the dual form of our optimization model, we demonstrate that the investment performance of linear control policies is directly connected to the intertemporal covariance of asset returns. To mitigate overfitting to training data (i.e., historical asset returns), we apply robust optimization. For this optimization, we prove that the worst-case coherent risk measure can be decomposed into the empirical risk measure and the penalty terms. Numerical results demonstrate that when the number of assets is small, linear control policies deliver good out-of-sample investment performance. When the number of assets is large, the penalty terms improve the out-of-sample investment performance.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于线性控制策略的动态投资组合选择
研究动态投资组合选择的线性控制策略。我们通过在一致风险最小化的基础上结合资产回报的时间序列行为来制定这一政策。通过分析优化模型的对偶形式,我们证明了线性控制策略的投资绩效与资产收益的跨期协方差直接相关。为了减轻对训练数据的过度拟合(即,历史资产回报),我们应用了鲁棒优化。对于这种优化,我们证明了最坏情况下的相干风险度量可以分解为经验风险度量和惩罚项。数值结果表明,当资产数量较少时,线性控制策略具有良好的样本外投资绩效。当资产数量较大时,惩罚项改善了样本外投资绩效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Operations Research Perspectives
Operations Research Perspectives Mathematics-Statistics and Probability
CiteScore
6.40
自引率
0.00%
发文量
36
审稿时长
27 days
期刊最新文献
Integrated order acceptance and inventory policy optimization in a multi-period, multi-product hybrid production system Distributional robustness based on Wasserstein-metric approach for humanitarian logistics problem under road disruptions A generalized behavioral-based goal programming approach for decision-making under imprecision δ-perturbation of bilevel optimization problems: An error bound analysis Competitive pricing and seed node selection in a two-echelon supply chain
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1