Robust quasi‐randomization‐based estimation with ensemble learning for missing data

IF 1 4区 数学 Q3 STATISTICS & PROBABILITY Scandinavian Journal of Statistics Pub Date : 2022-12-11 DOI:10.1111/sjos.12626
Danhyang Lee, Li‐Chun Zhang, Sixia Chen
{"title":"Robust quasi‐randomization‐based estimation with ensemble learning for missing data","authors":"Danhyang Lee, Li‐Chun Zhang, Sixia Chen","doi":"10.1111/sjos.12626","DOIUrl":null,"url":null,"abstract":"Missing data analysis requires assumptions about an outcome model or a response probability model to adjust for potential bias due to nonresponse. Doubly robust (DR) estimators are consistent if at least one of the models is correctly specified. Multiply robust (MR) estimators extend DR estimators by allowing for multiple models for both the outcome and/or response probability models and are consistent if at least one of the multiple models is correctly specified. We propose a robust quasi‐randomization‐based model approach to bring more protection against model misspecification than the existing DR and MR estimators, where any multiple semiparametric, nonparametric or machine learning models can be used for the outcome variable. The proposed estimator achieves unbiasedness by using a subsampling Rao–Blackwell method, given cell‐homogenous response, regardless of any working models for the outcome. An unbiased variance estimation formula is proposed, which does not use any replicate jackknife or bootstrap methods. A simulation study shows that our proposed method outperforms the existing multiply robust estimators.","PeriodicalId":49567,"journal":{"name":"Scandinavian Journal of Statistics","volume":"50 1","pages":"1263 - 1278"},"PeriodicalIF":1.0000,"publicationDate":"2022-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scandinavian Journal of Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1111/sjos.12626","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Missing data analysis requires assumptions about an outcome model or a response probability model to adjust for potential bias due to nonresponse. Doubly robust (DR) estimators are consistent if at least one of the models is correctly specified. Multiply robust (MR) estimators extend DR estimators by allowing for multiple models for both the outcome and/or response probability models and are consistent if at least one of the multiple models is correctly specified. We propose a robust quasi‐randomization‐based model approach to bring more protection against model misspecification than the existing DR and MR estimators, where any multiple semiparametric, nonparametric or machine learning models can be used for the outcome variable. The proposed estimator achieves unbiasedness by using a subsampling Rao–Blackwell method, given cell‐homogenous response, regardless of any working models for the outcome. An unbiased variance estimation formula is proposed, which does not use any replicate jackknife or bootstrap methods. A simulation study shows that our proposed method outperforms the existing multiply robust estimators.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
缺失数据的基于集成学习的稳健准随机化估计
缺失数据分析需要对结果模型或响应概率模型进行假设,以调整由于无响应而产生的潜在偏差。如果至少有一个模型被正确指定,则双鲁棒估计量是一致的。多重鲁棒(MR)估计器通过允许结果和/或响应概率模型的多个模型来扩展DR估计器,如果多个模型中至少有一个被正确指定,则它们是一致的。我们提出了一种鲁棒的基于准随机化的模型方法,比现有的DR和MR估计器提供更多的保护,防止模型错误规范,其中任何多个半参数,非参数或机器学习模型都可以用于结果变量。提出的估计器通过使用子抽样Rao-Blackwell方法实现无偏性,给定细胞均匀响应,而不管结果的任何工作模型。提出了一种不使用重复折刀法和自举法的无偏方差估计公式。仿真研究表明,该方法优于现有的多重鲁棒估计方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Scandinavian Journal of Statistics
Scandinavian Journal of Statistics 数学-统计学与概率论
CiteScore
1.80
自引率
0.00%
发文量
61
审稿时长
6-12 weeks
期刊介绍: The Scandinavian Journal of Statistics is internationally recognised as one of the leading statistical journals in the world. It was founded in 1974 by four Scandinavian statistical societies. Today more than eighty per cent of the manuscripts are submitted from outside Scandinavia. It is an international journal devoted to reporting significant and innovative original contributions to statistical methodology, both theory and applications. The journal specializes in statistical modelling showing particular appreciation of the underlying substantive research problems. The emergence of specialized methods for analysing longitudinal and spatial data is just one example of an area of important methodological development in which the Scandinavian Journal of Statistics has a particular niche.
期刊最新文献
Enriched Pitman-Yor processes. Post-selection inference for the Cox model with interval-censored data. Post-selection inference for high-dimensional mediation analysis with survival outcomes. Model‐based clustering in simple hypergraphs through a stochastic blockmodel Some approximations to the path formula for some nonlinear models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1