Environmental and technical feasibility of a waste foundry sand applied to pavement granular layers

IF 1.1 Q4 ENGINEERING, GEOLOGICAL Soils and Rocks Pub Date : 2022-12-01 DOI:10.28927/sr.2023.001722
Manuella Morais, William Levandoski, Joice Reis, Francisco Rosa, E. Korf
{"title":"Environmental and technical feasibility of a waste foundry sand applied to pavement granular layers","authors":"Manuella Morais, William Levandoski, Joice Reis, Francisco Rosa, E. Korf","doi":"10.28927/sr.2023.001722","DOIUrl":null,"url":null,"abstract":"The foundry industry generates large amounts of residual byproducts, such as waste foundry sand (WFS). This high generation has motivated studies concerning the disposition of WFS, which in turn can be used for road subbases. Nevertheless, paving applications are still limited, especially regarding the behavior of WFS when added to a mixture of crushed materials. Hence, the objective of this study was to evaluate WFS reuse in mixtures with crushed materials, applied as granular layers of granulometric stabilized pavements. The crushed materials and WFS were characterized by size distribution, physical aspects, and different mixtures, and later submitted to mechanical testing. Initial tests were utilized to define mixtures (crushed material + WFS) that fulfilled the technical requirements for road subbases. California bearing ratio and resilient modulus tests indicated that WFS additions up to 12% for “A” grading improved the bearing capacity of the mixture; while in “E” grading, WFS additions up to 38% resulted in no expressive improvement in bearing characteristics. Thus, for both gradings, a structure with high density, strength, and low susceptibility to deformations can be used for road subbase construction without technical issues. Finally, the highest WFS content (38%) mixture was environmentally classified as a Class II A non-inert waste, indicating its environmental viability for road applications.","PeriodicalId":43687,"journal":{"name":"Soils and Rocks","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soils and Rocks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28927/sr.2023.001722","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 2

Abstract

The foundry industry generates large amounts of residual byproducts, such as waste foundry sand (WFS). This high generation has motivated studies concerning the disposition of WFS, which in turn can be used for road subbases. Nevertheless, paving applications are still limited, especially regarding the behavior of WFS when added to a mixture of crushed materials. Hence, the objective of this study was to evaluate WFS reuse in mixtures with crushed materials, applied as granular layers of granulometric stabilized pavements. The crushed materials and WFS were characterized by size distribution, physical aspects, and different mixtures, and later submitted to mechanical testing. Initial tests were utilized to define mixtures (crushed material + WFS) that fulfilled the technical requirements for road subbases. California bearing ratio and resilient modulus tests indicated that WFS additions up to 12% for “A” grading improved the bearing capacity of the mixture; while in “E” grading, WFS additions up to 38% resulted in no expressive improvement in bearing characteristics. Thus, for both gradings, a structure with high density, strength, and low susceptibility to deformations can be used for road subbase construction without technical issues. Finally, the highest WFS content (38%) mixture was environmentally classified as a Class II A non-inert waste, indicating its environmental viability for road applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
废铸造砂应用于路面颗粒层的环境和技术可行性
铸造行业会产生大量的残余副产品,如废铸造砂(WFS)。这一高世代激发了关于WFS配置的研究,WFS可用于道路路基。然而,铺路应用仍然有限,特别是在WFS添加到粉碎材料混合物中时的行为方面。因此,本研究的目的是评估WFS在具有破碎材料的混合物中的再利用,该混合物用作粒度稳定路面的颗粒层。破碎材料和WFS通过尺寸分布、物理方面和不同的混合物进行了表征,随后进行了机械测试。初步试验用于确定满足道路底基层技术要求的混合物(粉碎材料+WFS)。加州承载比和弹性模量测试表明,“A”级配的WFS添加量高达12%,提高了混合物的承载能力;而在“E”级中,添加高达38%的WFS并没有显著改善轴承特性。因此,对于这两种级配,具有高密度、强度和低变形敏感性的结构可以用于道路底基层施工,而不会出现技术问题。最后,WFS含量最高(38%)的混合物在环境上被归类为II a类非惰性废物,表明其在道路应用中的环境可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Soils and Rocks
Soils and Rocks ENGINEERING, GEOLOGICAL-
CiteScore
1.00
自引率
20.00%
发文量
49
期刊介绍: Soils and Rocks publishes papers in English in the broad fields of Geotechnical Engineering, Engineering Geology and Environmental Engineering. The Journal is published in April, August and December. The journal, with the name "Solos e Rochas", was first published in 1978 by the Graduate School of Engineering-Federal University of Rio de Janeiro (COPPE-UFRJ).
期刊最新文献
Discussion of “Systematic literature review and mapping of the prediction of pile capacities” Primary consolidation settlement due to ramp loading: Terzaghi (1943) method revisited Behavior of clayey soil treated with nano magnesium oxide material Numerical modeling of the behavior of a surface foundation located in the proximity of a slope Analysis of sorption/desorption of cadmium and lead in the legal amazon soils
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1