Gill Net Selectivity for Fifteen Fish Species of the Upper San Francisco Estuary

Q3 Agricultural and Biological Sciences San Francisco Estuary and Watershed Science Pub Date : 2022-06-24 DOI:10.15447/sfews.2022v20iss2art4
Marissa Wulff, F. Feyrer, M. Young
{"title":"Gill Net Selectivity for Fifteen Fish Species of the Upper San Francisco Estuary","authors":"Marissa Wulff, F. Feyrer, M. Young","doi":"10.15447/sfews.2022v20iss2art4","DOIUrl":null,"url":null,"abstract":"Gill-net size selectivity for fifteen fish species occurring in the upper San Francisco Estuary was estimated from a data set compiled from multiple studies which together contained 7,096 individual fish observations from 882 gill net sets. The gill nets considered in this study closely resembled the American Fisheries Society’s recommended standardized experimental gill nets for sampling inland waters. Relationships between gill-net mesh sizes and the sizes for each fish species retained in them were estimated indirectly using generalized linear modeling and maximum likelihood. Selectivity curves are provided for each species to inform researchers about population characteristics of fishes sampled with similar gill nets.","PeriodicalId":38364,"journal":{"name":"San Francisco Estuary and Watershed Science","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"San Francisco Estuary and Watershed Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15447/sfews.2022v20iss2art4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 2

Abstract

Gill-net size selectivity for fifteen fish species occurring in the upper San Francisco Estuary was estimated from a data set compiled from multiple studies which together contained 7,096 individual fish observations from 882 gill net sets. The gill nets considered in this study closely resembled the American Fisheries Society’s recommended standardized experimental gill nets for sampling inland waters. Relationships between gill-net mesh sizes and the sizes for each fish species retained in them were estimated indirectly using generalized linear modeling and maximum likelihood. Selectivity curves are provided for each species to inform researchers about population characteristics of fishes sampled with similar gill nets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
旧金山上游15种鱼类的刺网选择性
旧金山河口上游15种鱼类的刺网大小选择性是根据多项研究汇编的数据集估计的,这些研究共包含882组刺网中的7096个个体鱼类观察结果。本研究中考虑的刺网与美国渔业协会推荐的内陆水域采样标准化实验刺网非常相似。使用广义线性模型和最大似然法间接估计了刺网网眼大小与保留在其中的每种鱼类的大小之间的关系。为每个物种提供了选择性曲线,以告知研究人员使用类似刺网采样的鱼类的种群特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
San Francisco Estuary and Watershed Science
San Francisco Estuary and Watershed Science Environmental Science-Water Science and Technology
CiteScore
2.90
自引率
0.00%
发文量
24
审稿时长
24 weeks
期刊最新文献
Regional Diversity Trends of Nearshore Fish Assemblages of the Upper San Francisco Estuary Sub-Lethal Responses of Delta Smelt to Contaminants Under Different Flow Conditions Spatial Patterns of Water Supply and Use in California Managed Wetlands for Climate Action: Potential Greenhouse Gas and Subsidence Mitigation in the Sacramento–San Joaquin Delta Proofing Field and Laboratory Species Identification Procedures Developed for the Non-Native Osmerid Species Wakasagi (Hypomesus nipponensis) Using SHERLOCK-Based Genetic Verification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1