Effects of Volute Structure on Energy Performance and Rotor Operational Stability of Molten Salt Pumps

IF 1.1 4区 工程技术 Q4 MECHANICS Journal of Applied Fluid Mechanics Pub Date : 2023-08-01 DOI:10.47176/jafm.16.08.1741
Q. Li, R. Zhang, H. Xu
{"title":"Effects of Volute Structure on Energy Performance and Rotor Operational Stability of Molten Salt Pumps","authors":"Q. Li, R. Zhang, H. Xu","doi":"10.47176/jafm.16.08.1741","DOIUrl":null,"url":null,"abstract":"A double-volute molten salt pump with two outlet pipes is proposed based on the original pump model. A numerical approach coupling finite element analysis and computational fluid dynamics (CFD) is implemented to investigate the operational stability and energy performance of two molten salt centrifugal pumps for high-temperature molten salt. The entropy production of the single-volute and double-volute molten salt pumps is investigated. The effects of the volute structures on the mechanical behavior of the impeller and shaft are considered. According to the findings, the local entropy production in the molten salt pump is dominated by the local pulsating entropy production (Spro-T), with the double-volute scheme achieving reduced energy loss. A visualization of the flow field and the local entropy production rate (LEPR) distributions indicate that the LEPR is positively correlated with the complexity of the flow, and higher levels of turbulence intensity lead to greater LEPR. The double-volute scheme enhances the complexity of the flow in the impeller, resulting in an increase in the LEPR compared with the single-volute design. However, the LEPR in the whole double-volute molten salt pump is reduced compared with the single-volute design. It is discovered that the double-volute molten salt pump experiences a less radial hydraulic force. Although the double-volute design has a slightly higher maximum equivalent stress on the impeller than the single-volute scheme, the rotor deformation is significantly less. In general, the double-volute scheme reduces energy loss and ensures better structural stability.","PeriodicalId":49041,"journal":{"name":"Journal of Applied Fluid Mechanics","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.47176/jafm.16.08.1741","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

A double-volute molten salt pump with two outlet pipes is proposed based on the original pump model. A numerical approach coupling finite element analysis and computational fluid dynamics (CFD) is implemented to investigate the operational stability and energy performance of two molten salt centrifugal pumps for high-temperature molten salt. The entropy production of the single-volute and double-volute molten salt pumps is investigated. The effects of the volute structures on the mechanical behavior of the impeller and shaft are considered. According to the findings, the local entropy production in the molten salt pump is dominated by the local pulsating entropy production (Spro-T), with the double-volute scheme achieving reduced energy loss. A visualization of the flow field and the local entropy production rate (LEPR) distributions indicate that the LEPR is positively correlated with the complexity of the flow, and higher levels of turbulence intensity lead to greater LEPR. The double-volute scheme enhances the complexity of the flow in the impeller, resulting in an increase in the LEPR compared with the single-volute design. However, the LEPR in the whole double-volute molten salt pump is reduced compared with the single-volute design. It is discovered that the double-volute molten salt pump experiences a less radial hydraulic force. Although the double-volute design has a slightly higher maximum equivalent stress on the impeller than the single-volute scheme, the rotor deformation is significantly less. In general, the double-volute scheme reduces energy loss and ensures better structural stability.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
蜗壳结构对熔盐泵能量性能和转子运行稳定性的影响
在原有熔盐泵模型的基础上,提出了一种双出口双蜗壳熔盐泵。采用有限元分析与计算流体动力学(CFD)相结合的数值方法,研究了两台高温熔盐离心泵的运行稳定性和能量性能。研究了单蜗壳和双蜗壳熔盐泵的熵产。考虑了蜗壳结构对叶轮和轴的力学性能的影响。根据研究结果,熔盐泵中的局部熵产主要由局部脉动熵产(Spro-T)控制,双蜗壳方案降低了能量损失。流场和局部熵产生率(LEPR)分布的可视化表明,LEPR与流动的复杂性呈正相关,湍流强度越高,LEPR越大。双蜗壳方案增加了叶轮中流动的复杂性,与单蜗壳设计相比,导致LEPR增加。然而,与单蜗壳设计相比,整个双蜗壳熔盐泵的LEPR降低了。研究发现,双蜗壳熔盐泵径向水力较小。尽管双蜗壳设计对叶轮的最大等效应力略高于单蜗壳方案,但转子变形明显较小。总的来说,双蜗壳方案减少了能量损失,确保了更好的结构稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Applied Fluid Mechanics
Journal of Applied Fluid Mechanics THERMODYNAMICS-MECHANICS
CiteScore
2.00
自引率
20.00%
发文量
138
审稿时长
>12 weeks
期刊介绍: The Journal of Applied Fluid Mechanics (JAFM) is an international, peer-reviewed journal which covers a wide range of theoretical, numerical and experimental aspects in fluid mechanics. The emphasis is on the applications in different engineering fields rather than on pure mathematical or physical aspects in fluid mechanics. Although many high quality journals pertaining to different aspects of fluid mechanics presently exist, research in the field is rapidly escalating. The motivation for this new fluid mechanics journal is driven by the following points: (1) there is a need to have an e-journal accessible to all fluid mechanics researchers, (2) scientists from third- world countries need a venue that does not incur publication costs, (3) quality papers deserve rapid and fast publication through an efficient peer review process, and (4) an outlet is needed for rapid dissemination of fluid mechanics conferences held in Asian countries. Pertaining to this latter point, there presently exist some excellent conferences devoted to the promotion of fluid mechanics in the region such as the Asian Congress of Fluid Mechanics which began in 1980 and nominally takes place in one of the Asian countries every two years. We hope that the proposed journal provides and additional impetus for promoting applied fluids research and associated activities in this continent. The journal is under the umbrella of the Physics Society of Iran with the collaboration of Isfahan University of Technology (IUT) .
期刊最新文献
Scale Effects Investigation in Physical Modeling of Recirculating Shallow Flow Using Large Eddy Simulation Technique A Numerical Study on the Energy Dissipation Mechanisms of a Two-Stage Vertical Pump as Turbine Using Entropy Generation Theory Numerical Investigation of Oil–Air Flow Inside Tapered Roller Bearings with Oil Bath Lubrication Suppressing the Vortex Rope Oscillation and Pressure Fluctuations by the Air Admission in Propeller Hydro-Turbine Draft Tube Analysis of Near-wall Coherent Structure of Spiral Flow in Circular Pipe Based on Large Eddy Simulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1