L. Maa, Justin D. Dernera, R. D. Harmelb, John Tatarkoa, A. Moorec, C. A. Rotzd, David J. Augustinea, Randall B. Boonee, Michael B. Coughenoure, Pierre C. Beukesf, Mark T. van Wijkg, Gianni Bellocchih, Brendan R. Culleni, Hailey Wilmera
{"title":"Advances in Agronomy","authors":"L. Maa, Justin D. Dernera, R. D. Harmelb, John Tatarkoa, A. Moorec, C. A. Rotzd, David J. Augustinea, Randall B. Boonee, Michael B. Coughenoure, Pierre C. Beukesf, Mark T. van Wijkg, Gianni Bellocchih, Brendan R. Culleni, Hailey Wilmera","doi":"10.22271/ed.book.485","DOIUrl":null,"url":null,"abstract":"Grazing land models can assess the provisioning and trade-offs among ecosystem services attributable to grazing management strategies. We reviewed 12 grazing land models used for evaluating forage and animal (meat and milk) production, soil C sequestration, greenhouse gas emission, and nitrogen leaching, under both current and projected climate conditions. Given the spatial and temporal variability that characterizes most rangelands and pastures in which animal, plant, and soil interact, none of the models currently have the capability to simulate a full suite of ecosystem services provided by grazing lands at different spatial scales and across multiple locations. A large number of model applications have focused on topics such as environmental impacts of grazing land management and sustainability of ecosystems. Additional model components are needed to address the spatial and temporal dynamics of animal foraging behavior and interactions with biophysical and ecological processes on grazing lands and their impacts on animal performance. In addition to identified knowledge gaps in simulating biophysical processes in grazing land ecosystems, our review suggests further improvements that could increase adoption of these models as decision support tools. Grazing land models need to increase user-friendliness by utilizing available big data to minimize model parameterization so that multiple models can be used to reduce simulation uncertainty. Efforts need to reduce inconsistencies among grazing land models in simulated ecosystem services and grazing management effects by carefully examining the underlying biophysical and ecological processes and their interactions in eachmodel. Learning experiences amongmodelers, experimentalists, and stakeholders need to be strengthened by co-developing modeling objectives, approaches, and interpretation of simulation results.","PeriodicalId":50953,"journal":{"name":"Advances in Microbial Physiology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Microbial Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.22271/ed.book.485","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 4
Abstract
Grazing land models can assess the provisioning and trade-offs among ecosystem services attributable to grazing management strategies. We reviewed 12 grazing land models used for evaluating forage and animal (meat and milk) production, soil C sequestration, greenhouse gas emission, and nitrogen leaching, under both current and projected climate conditions. Given the spatial and temporal variability that characterizes most rangelands and pastures in which animal, plant, and soil interact, none of the models currently have the capability to simulate a full suite of ecosystem services provided by grazing lands at different spatial scales and across multiple locations. A large number of model applications have focused on topics such as environmental impacts of grazing land management and sustainability of ecosystems. Additional model components are needed to address the spatial and temporal dynamics of animal foraging behavior and interactions with biophysical and ecological processes on grazing lands and their impacts on animal performance. In addition to identified knowledge gaps in simulating biophysical processes in grazing land ecosystems, our review suggests further improvements that could increase adoption of these models as decision support tools. Grazing land models need to increase user-friendliness by utilizing available big data to minimize model parameterization so that multiple models can be used to reduce simulation uncertainty. Efforts need to reduce inconsistencies among grazing land models in simulated ecosystem services and grazing management effects by carefully examining the underlying biophysical and ecological processes and their interactions in eachmodel. Learning experiences amongmodelers, experimentalists, and stakeholders need to be strengthened by co-developing modeling objectives, approaches, and interpretation of simulation results.
期刊介绍:
Advances in Microbial Physiology publishes topical and important reviews, interpreting physiology to include all material that contributes to our understanding of how microorganisms and their component parts work. First published in 1967, the editors have always striven to interpret microbial physiology in the broadest context and have never restricted the contents to traditional views of whole cell physiology.