Impact of bioenergy crop expansion on climate–carbon cycle feedbacks in overshoot scenarios

I. Melnikova, O. Boucher, P. Cadule, Katsumasa Tanaka, T. Gasser, T. Hajima, Y. Quilcaille, H. Shiogama, R. Séférian, K. Tachiiri, N. Vuichard, T. Yokohata, P. Ciais
{"title":"Impact of bioenergy crop expansion on climate–carbon cycle feedbacks in overshoot scenarios","authors":"I. Melnikova, O. Boucher, P. Cadule, Katsumasa Tanaka, T. Gasser, T. Hajima, Y. Quilcaille, H. Shiogama, R. Séférian, K. Tachiiri, N. Vuichard, T. Yokohata, P. Ciais","doi":"10.5194/esd-13-779-2022","DOIUrl":null,"url":null,"abstract":"Abstract. Stringent mitigation pathways frame the deployment of second-generation bioenergy crops combined with carbon capture and storage (CCS) to generate negative CO2 emissions. This bioenergy with CCS (BECCS) technology facilitates the achievement of the long-term temperature goal of the Paris Agreement. Here, we use five state-of-the-art Earth system models (ESMs) to explore the consequences of large-scale BECCS deployment on the climate–carbon cycle feedbacks under the CMIP6 SSP5-3.4-OS overshoot scenario keeping in mind that all these models use generic crop vegetation\nto simulate BECCS. First, we evaluate the land cover representation by ESMs\nand highlight the inconsistencies that emerge during translation of the data from integrated assessment models (IAMs) that are used to develop the\nscenario. Second, we evaluate the land-use change (LUC) emissions of ESMs\nagainst bookkeeping models. Finally, we show that an extensive cropland\nexpansion for BECCS causes ecosystem carbon loss that drives the acceleration of carbon turnover and affects the CO2 fertilization\neffect- and climate-change-driven land carbon uptake. Over the 2000–2100\nperiod, the LUC for BECCS leads to an offset of the CO2 fertilization effect-driven carbon uptake by 12.2 % and amplifies the climate-change-driven carbon loss by 14.6 %. A human choice on land area\nallocation for energy crops should take into account not only the potential\namount of the bioenergy yield but also the LUC emissions, and the associated loss of future potential change in the carbon uptake. The dependency of the land carbon uptake on LUC is strong in the SSP5-3.4-OS scenario, but it also affects other Shared Socioeconomic Pathway (SSP) scenarios and should be taken into account by the IAM teams. Future studies should further investigate the trade-offs between the carbon gains from the bioenergy yield and losses from the reduced CO2 fertilization effect-driven carbon uptake where BECCS is applied.\n","PeriodicalId":92775,"journal":{"name":"Earth system dynamics : ESD","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth system dynamics : ESD","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/esd-13-779-2022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Abstract. Stringent mitigation pathways frame the deployment of second-generation bioenergy crops combined with carbon capture and storage (CCS) to generate negative CO2 emissions. This bioenergy with CCS (BECCS) technology facilitates the achievement of the long-term temperature goal of the Paris Agreement. Here, we use five state-of-the-art Earth system models (ESMs) to explore the consequences of large-scale BECCS deployment on the climate–carbon cycle feedbacks under the CMIP6 SSP5-3.4-OS overshoot scenario keeping in mind that all these models use generic crop vegetation to simulate BECCS. First, we evaluate the land cover representation by ESMs and highlight the inconsistencies that emerge during translation of the data from integrated assessment models (IAMs) that are used to develop the scenario. Second, we evaluate the land-use change (LUC) emissions of ESMs against bookkeeping models. Finally, we show that an extensive cropland expansion for BECCS causes ecosystem carbon loss that drives the acceleration of carbon turnover and affects the CO2 fertilization effect- and climate-change-driven land carbon uptake. Over the 2000–2100 period, the LUC for BECCS leads to an offset of the CO2 fertilization effect-driven carbon uptake by 12.2 % and amplifies the climate-change-driven carbon loss by 14.6 %. A human choice on land area allocation for energy crops should take into account not only the potential amount of the bioenergy yield but also the LUC emissions, and the associated loss of future potential change in the carbon uptake. The dependency of the land carbon uptake on LUC is strong in the SSP5-3.4-OS scenario, but it also affects other Shared Socioeconomic Pathway (SSP) scenarios and should be taken into account by the IAM teams. Future studies should further investigate the trade-offs between the carbon gains from the bioenergy yield and losses from the reduced CO2 fertilization effect-driven carbon uptake where BECCS is applied.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超调情景下生物能源作物扩张对气候-碳循环反馈的影响
摘要严格的缓解途径规定了第二代生物能源作物的部署与碳捕获和储存(CCS)相结合,以产生负二氧化碳排放。这种具有CCS(BECCS)技术的生物能源有助于实现《巴黎协定》的长期温度目标。在这里,我们使用五个最先进的地球系统模型(ESM)来探索大规模BECCS部署对CMIP6 SSP5-3.4-OS超调情景下的气候-碳循环反馈的影响,记住所有这些模型都使用通用作物植被来模拟BECCS。首先,我们评估了ESM的土地覆盖代表性,并强调了在转换用于开发场景的综合评估模型(IAM)数据时出现的不一致性。其次,我们使用记账模型对ESM的土地利用变化(LUC)排放进行了评估。最后,我们表明,BECCS的大规模农田扩张会导致生态系统碳损失,从而推动碳周转的加速,并影响二氧化碳施肥效应——以及气候变化驱动的土地碳吸收。在2000-2100年期间,BECCS的LUC导致CO2施肥效应驱动的碳吸收抵消12.2 % 并将气候变化导致的碳损失增加14.6 %. 人类对能源作物土地面积分配的选择不仅应考虑到生物能源产量的潜在增长,还应考虑到土地利用变化的排放,以及碳吸收未来潜在变化的相关损失。在SSP5-3.4-OS情景中,土地碳吸收对土地利用变化的依赖性很强,但它也会影响其他共享社会经济途径(SSP)情景,IAM团队应将其考虑在内。未来的研究应该进一步调查生物能源产量带来的碳收益和应用BECCS时二氧化碳施肥效应驱动的碳吸收减少带来的碳损失之间的权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Advancing the estimation of future climate impacts within the United States. Carbon fluxes in spring wheat agroecosystem in India A 20-year satellite-reanalysis-based climatology of extreme precipitation characteristics over the Sinai Peninsula Impacts of anthropogenic water regulation on global riverine dissolved organic carbon transport Working at the limit: a review of thermodynamics and optimality of the Earth system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1