Seasonal Oxidation Potential of Vehicle Emission using Tunnel Flow Coefficient

IF 1 Q4 METEOROLOGY & ATMOSPHERIC SCIENCES Journal of Korean Society for Atmospheric Environment Pub Date : 2022-04-30 DOI:10.5572/kosae.2022.38.2.294
Seoyeong Choe, Sea-Ho Oh, Myoungki Song, Eunyoung Kim, Yongmin Lee, S. Seo, G. Park, Minsung Kim, Kyungmin Kim, Taehyoung Lee, M. Bae
{"title":"Seasonal Oxidation Potential of Vehicle Emission using Tunnel Flow Coefficient","authors":"Seoyeong Choe, Sea-Ho Oh, Myoungki Song, Eunyoung Kim, Yongmin Lee, S. Seo, G. Park, Minsung Kim, Kyungmin Kim, Taehyoung Lee, M. Bae","doi":"10.5572/kosae.2022.38.2.294","DOIUrl":null,"url":null,"abstract":"Seasonal samples located in Seoul were collected from inside and outside tunnel at the same time to determine the oxidation potential (OP) using dithiothreitol (DTT) method corresponding to real-world vehicle emissions. First, the novel quantitative oxidation potential method was developed using 9,10-phenanthraquinone. Second, quinone normalized DTT-OP was utilized to calculate the seasonal oxidation potential of unit vehicle emission with tunnel flow coefficient. As a result, the overall average for seasonal oxidation potential of unit vehicle emission were shown as 169 μM/veh · km. In addition, the highest concentration was presented from midnight through 6 a.m. for all seasons due to complex parameters including vehicle speeds. This result will be able to investigate the health studies associated with unit of vehicle emissions in real atmosphere.","PeriodicalId":16269,"journal":{"name":"Journal of Korean Society for Atmospheric Environment","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Korean Society for Atmospheric Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5572/kosae.2022.38.2.294","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 1

Abstract

Seasonal samples located in Seoul were collected from inside and outside tunnel at the same time to determine the oxidation potential (OP) using dithiothreitol (DTT) method corresponding to real-world vehicle emissions. First, the novel quantitative oxidation potential method was developed using 9,10-phenanthraquinone. Second, quinone normalized DTT-OP was utilized to calculate the seasonal oxidation potential of unit vehicle emission with tunnel flow coefficient. As a result, the overall average for seasonal oxidation potential of unit vehicle emission were shown as 169 μM/veh · km. In addition, the highest concentration was presented from midnight through 6 a.m. for all seasons due to complex parameters including vehicle speeds. This result will be able to investigate the health studies associated with unit of vehicle emissions in real atmosphere.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于隧道流量系数的汽车尾气季节性氧化电位
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Korean Society for Atmospheric Environment
Journal of Korean Society for Atmospheric Environment METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
2.00
自引率
60.00%
发文量
50
期刊最新文献
Extraction of Emission Factors by Flight Mode (LTO, Cruise) of Domestic Aircraft and Comparison of Air Emissions during 2019~2021 Research Trend Analysis of Atmospheric Science in Korea Based on Keywords Used in the Journal of the Korean Society for Atmospheric Environment (KOSAE) during 1985~2022 Removal of Ammonia, Hydrogen Sulfide, and Methyl Mercaptan as Livestock Odor Using a Low-energy (0.2 MeV) Electron Beam Accelerator Review and Recommendations of Domestic and International Research on Aircraft-based Measurements for Air Pollutants Status of Development and Utilization of Geostationary Environmental Satellites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1