Monitoring carbon dioxide to quantify the risk of indoor airborne transmission of COVID-19

IF 2.8 Q2 MECHANICS Flow (Cambridge, England) Pub Date : 2021-04-07 DOI:10.1017/flo.2021.10
M. Bazant, Ousmane Kodio, Alexander E. Cohen, Kasim Khan, Zongyu Gu, J. M. Bush
{"title":"Monitoring carbon dioxide to quantify the risk of indoor airborne transmission of COVID-19","authors":"M. Bazant, Ousmane Kodio, Alexander E. Cohen, Kasim Khan, Zongyu Gu, J. M. Bush","doi":"10.1017/flo.2021.10","DOIUrl":null,"url":null,"abstract":"Graphical Abstract Abstract A new guideline for mitigating indoor airborne transmission of COVID-19 prescribes a limit on the time spent in a shared space with an infected individual (Bazant & Bush, Proceedings of the National Academy of Sciences of the United States of America, vol. 118, issue 17, 2021, e2018995118). Here, we rephrase this safety guideline in terms of occupancy time and mean exhaled carbon dioxide (${\\rm CO}_{2}$) concentration in an indoor space, thereby enabling the use of ${\\rm CO}_{2}$ monitors in the risk assessment of airborne transmission of respiratory diseases. While ${\\rm CO}_{2}$ concentration is related to airborne pathogen concentration (Rudnick & Milton, Indoor Air, vol. 13, issue 3, 2003, pp. 237–245), the guideline developed here accounts for the different physical processes affecting their evolution, such as enhanced pathogen production from vocal activity and pathogen removal via face-mask use, filtration, sedimentation and deactivation. Critically, transmission risk depends on the total infectious dose, so necessarily depends on both the pathogen concentration and exposure time. The transmission risk is also modulated by the fractions of susceptible, infected and immune people within a population, which evolve as the pandemic runs its course. A mathematical model is developed that enables a prediction of airborne transmission risk from real-time ${\\rm CO}_{2}$ measurements. Illustrative examples of implementing our guideline are presented using data from ${\\rm CO}_{2}$ monitoring in university classrooms and office spaces.","PeriodicalId":93752,"journal":{"name":"Flow (Cambridge, England)","volume":"1 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2021-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flow (Cambridge, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/flo.2021.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 37

Abstract

Graphical Abstract Abstract A new guideline for mitigating indoor airborne transmission of COVID-19 prescribes a limit on the time spent in a shared space with an infected individual (Bazant & Bush, Proceedings of the National Academy of Sciences of the United States of America, vol. 118, issue 17, 2021, e2018995118). Here, we rephrase this safety guideline in terms of occupancy time and mean exhaled carbon dioxide (${\rm CO}_{2}$) concentration in an indoor space, thereby enabling the use of ${\rm CO}_{2}$ monitors in the risk assessment of airborne transmission of respiratory diseases. While ${\rm CO}_{2}$ concentration is related to airborne pathogen concentration (Rudnick & Milton, Indoor Air, vol. 13, issue 3, 2003, pp. 237–245), the guideline developed here accounts for the different physical processes affecting their evolution, such as enhanced pathogen production from vocal activity and pathogen removal via face-mask use, filtration, sedimentation and deactivation. Critically, transmission risk depends on the total infectious dose, so necessarily depends on both the pathogen concentration and exposure time. The transmission risk is also modulated by the fractions of susceptible, infected and immune people within a population, which evolve as the pandemic runs its course. A mathematical model is developed that enables a prediction of airborne transmission risk from real-time ${\rm CO}_{2}$ measurements. Illustrative examples of implementing our guideline are presented using data from ${\rm CO}_{2}$ monitoring in university classrooms and office spaces.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
监测二氧化碳以量化新冠肺炎室内空气传播的风险
图形摘要摘要缓解新冠肺炎室内空气传播的新指南规定了与感染者在共享空间中花费的时间限制(Bazant&Bush,《美国国家科学院院刊》,第118卷,2021年第17期,2018年第995118页)。在这里,我们根据室内空间的占用时间和平均呼出二氧化碳(${\rm-CO}_{2}$)浓度重新表述了这一安全指南,从而能够在呼吸道疾病的空气传播风险评估中使用${\rm-CO}_{2}$监测仪。虽然${\rm CO}_{2}$浓度与空气中的病原体浓度有关(Rudnick&Milton,Indoor Air,第13卷,2003年第3期,第237–245页),但此处制定的指南说明了影响其进化的不同物理过程,如通过使用口罩、过滤、沉淀和去活来增强发声活动产生的病原体和去除病原体。至关重要的是,传播风险取决于感染总剂量,因此必然取决于病原体浓度和暴露时间。传播风险也受到人群中易感、感染和免疫人群比例的调节,这些人群随着疫情的发展而演变。开发了一个数学模型,可以通过实时的${\rm-CO}_{2}$测量来预测空气传播风险。利用大学教室和办公场所${\rm-CO}_{2}$监测的数据,介绍了实施我们的指导方针的示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
0
期刊最新文献
Benefits of controlled inclination for contactless transport by squeeze-film levitation Investigating cohesive sediment dynamics in open waters via grain-resolved simulations Stream lamination and rapid mixing in a microfluidic jet for X-ray spectroscopy studies Competing effects of buoyancy-driven and electrothermal flows for Joule heating-induced transport in microchannels Effects of prey capture on the swimming and feeding performance of choanoflagellates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1