An automated microfluidic system with one-dimensional beads array for multiplexed torch detection at point-of-care testing

IF 3 4区 医学 Q3 ENGINEERING, BIOMEDICAL Biomedical Microdevices Pub Date : 2022-11-03 DOI:10.1007/s10544-022-00629-9
Hao Li, Shengda Yu, Dong Wang, Xinying Huang, Qiang Fu, Donglin Xu, Lulu Zhang, Shizhi Qian, Xianbo Qiu
{"title":"An automated microfluidic system with one-dimensional beads array for multiplexed torch detection at point-of-care testing","authors":"Hao Li,&nbsp;Shengda Yu,&nbsp;Dong Wang,&nbsp;Xinying Huang,&nbsp;Qiang Fu,&nbsp;Donglin Xu,&nbsp;Lulu Zhang,&nbsp;Shizhi Qian,&nbsp;Xianbo Qiu","doi":"10.1007/s10544-022-00629-9","DOIUrl":null,"url":null,"abstract":"<div><p>An automated microfluidic system with functionalized beads has been developed for multiplexed TORCH detection at point-of-care testing. A concise microfluidic chip consisting of a one-dimensional beads array is developed to simultaneously detect TOX, RUB, CMV, HSV-I and HSV-II respectively with five functionalized beads. A compact liquid handling module has been developed to automate the sandwiched chemiluminescence immunoassay within the one-dimensional beads array of the microfluidic chip. A precise ram pump is adopted to not only add reagent into the microfluidic chip from outside, but also facilitate elaborate fluid control inside the microfluidic chip for improved performance. A large-size waste chamber with a liquid-absorbing sponge holds the waste reagent within the microfluidic chip to prevent backflow. The one-dimensional beads array is heated from double-sides at 37 ℃ for sensitive detection with reduced time. A sensitive CMOS camera is adopted to take chemiluminescence image from the one-dimensional beads array, and a custom processing algorithm is adopted to analyze the image. For each serum sample, five different infections can be simultaneously detected with the automated microfluidic system. Experimental results show that efficient, sensitive, and accurate multiplexed TORCH detection can be conveniently achieved with the integrated microfluidic system.</p></div>","PeriodicalId":490,"journal":{"name":"Biomedical Microdevices","volume":"24 4","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2022-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Microdevices","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10544-022-00629-9","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

An automated microfluidic system with functionalized beads has been developed for multiplexed TORCH detection at point-of-care testing. A concise microfluidic chip consisting of a one-dimensional beads array is developed to simultaneously detect TOX, RUB, CMV, HSV-I and HSV-II respectively with five functionalized beads. A compact liquid handling module has been developed to automate the sandwiched chemiluminescence immunoassay within the one-dimensional beads array of the microfluidic chip. A precise ram pump is adopted to not only add reagent into the microfluidic chip from outside, but also facilitate elaborate fluid control inside the microfluidic chip for improved performance. A large-size waste chamber with a liquid-absorbing sponge holds the waste reagent within the microfluidic chip to prevent backflow. The one-dimensional beads array is heated from double-sides at 37 ℃ for sensitive detection with reduced time. A sensitive CMOS camera is adopted to take chemiluminescence image from the one-dimensional beads array, and a custom processing algorithm is adopted to analyze the image. For each serum sample, five different infections can be simultaneously detected with the automated microfluidic system. Experimental results show that efficient, sensitive, and accurate multiplexed TORCH detection can be conveniently achieved with the integrated microfluidic system.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一个自动化的微流体系统与一维珠阵列多路火炬检测在护理点测试
一个自动化的微流控系统与功能化珠已开发用于多路火炬检测在护理点的测试。研制了一种由一维微球阵列组成的简洁微流控芯片,该芯片具有5个功能化微球,可同时检测TOX、RUB、CMV、HSV-I和HSV-II。开发了一种紧凑的液体处理模块,用于在微流控芯片的一维微珠阵列内自动进行夹三明治化学发光免疫分析。采用精密柱塞泵,既可从外部向微流控芯片中添加试剂,又可对微流控芯片内部进行精细流体控制,提高芯片性能。带有吸液海绵的大尺寸废物室将废物试剂保持在微流控芯片内以防止回流。一维微珠阵列在37℃下双面加热,灵敏度高,检测时间短。采用灵敏的CMOS相机对一维微珠阵列进行化学发光成像,并采用自定义处理算法对图像进行分析。对于每种血清样本,自动微流控系统可以同时检测五种不同的感染。实验结果表明,该集成微流控系统可方便地实现高效、灵敏、准确的多路TORCH检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomedical Microdevices
Biomedical Microdevices 工程技术-工程:生物医学
CiteScore
6.90
自引率
3.60%
发文量
32
审稿时长
6 months
期刊介绍: Biomedical Microdevices: BioMEMS and Biomedical Nanotechnology is an interdisciplinary periodical devoted to all aspects of research in the medical diagnostic and therapeutic applications of Micro-Electro-Mechanical Systems (BioMEMS) and nanotechnology for medicine and biology. General subjects of interest include the design, characterization, testing, modeling and clinical validation of microfabricated systems, and their integration on-chip and in larger functional units. The specific interests of the Journal include systems for neural stimulation and recording, bioseparation technologies such as nanofilters and electrophoretic equipment, miniaturized analytic and DNA identification systems, biosensors, and micro/nanotechnologies for cell and tissue research, tissue engineering, cell transplantation, and the controlled release of drugs and biological molecules. Contributions reporting on fundamental and applied investigations of the material science, biochemistry, and physics of biomedical microdevices and nanotechnology are encouraged. A non-exhaustive list of fields of interest includes: nanoparticle synthesis, characterization, and validation of therapeutic or imaging efficacy in animal models; biocompatibility; biochemical modification of microfabricated devices, with reference to non-specific protein adsorption, and the active immobilization and patterning of proteins on micro/nanofabricated surfaces; the dynamics of fluids in micro-and-nano-fabricated channels; the electromechanical and structural response of micro/nanofabricated systems; the interactions of microdevices with cells and tissues, including biocompatibility and biodegradation studies; variations in the characteristics of the systems as a function of the micro/nanofabrication parameters.
期刊最新文献
Smartphone-driven centrifugal microfluidics for diagnostics in resource limited settings Enhancing biomedical imaging: the role of nanoparticle-based contrast agents Panoramic review on polymeric microneedle arrays for clinical applications Construction of a pumpless gravity-driven vascularized Skin-on-a-Chip for the study of hepatocytotoxicity in percutaneous exposure to exogenous chemicals Functionalization of microbubbles in a microfluidic chip for biosensing application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1