{"title":"An automated microfluidic system with one-dimensional beads array for multiplexed torch detection at point-of-care testing","authors":"Hao Li, Shengda Yu, Dong Wang, Xinying Huang, Qiang Fu, Donglin Xu, Lulu Zhang, Shizhi Qian, Xianbo Qiu","doi":"10.1007/s10544-022-00629-9","DOIUrl":null,"url":null,"abstract":"<div><p>An automated microfluidic system with functionalized beads has been developed for multiplexed TORCH detection at point-of-care testing. A concise microfluidic chip consisting of a one-dimensional beads array is developed to simultaneously detect TOX, RUB, CMV, HSV-I and HSV-II respectively with five functionalized beads. A compact liquid handling module has been developed to automate the sandwiched chemiluminescence immunoassay within the one-dimensional beads array of the microfluidic chip. A precise ram pump is adopted to not only add reagent into the microfluidic chip from outside, but also facilitate elaborate fluid control inside the microfluidic chip for improved performance. A large-size waste chamber with a liquid-absorbing sponge holds the waste reagent within the microfluidic chip to prevent backflow. The one-dimensional beads array is heated from double-sides at 37 ℃ for sensitive detection with reduced time. A sensitive CMOS camera is adopted to take chemiluminescence image from the one-dimensional beads array, and a custom processing algorithm is adopted to analyze the image. For each serum sample, five different infections can be simultaneously detected with the automated microfluidic system. Experimental results show that efficient, sensitive, and accurate multiplexed TORCH detection can be conveniently achieved with the integrated microfluidic system.</p></div>","PeriodicalId":490,"journal":{"name":"Biomedical Microdevices","volume":"24 4","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2022-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Microdevices","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10544-022-00629-9","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
An automated microfluidic system with functionalized beads has been developed for multiplexed TORCH detection at point-of-care testing. A concise microfluidic chip consisting of a one-dimensional beads array is developed to simultaneously detect TOX, RUB, CMV, HSV-I and HSV-II respectively with five functionalized beads. A compact liquid handling module has been developed to automate the sandwiched chemiluminescence immunoassay within the one-dimensional beads array of the microfluidic chip. A precise ram pump is adopted to not only add reagent into the microfluidic chip from outside, but also facilitate elaborate fluid control inside the microfluidic chip for improved performance. A large-size waste chamber with a liquid-absorbing sponge holds the waste reagent within the microfluidic chip to prevent backflow. The one-dimensional beads array is heated from double-sides at 37 ℃ for sensitive detection with reduced time. A sensitive CMOS camera is adopted to take chemiluminescence image from the one-dimensional beads array, and a custom processing algorithm is adopted to analyze the image. For each serum sample, five different infections can be simultaneously detected with the automated microfluidic system. Experimental results show that efficient, sensitive, and accurate multiplexed TORCH detection can be conveniently achieved with the integrated microfluidic system.
期刊介绍:
Biomedical Microdevices: BioMEMS and Biomedical Nanotechnology is an interdisciplinary periodical devoted to all aspects of research in the medical diagnostic and therapeutic applications of Micro-Electro-Mechanical Systems (BioMEMS) and nanotechnology for medicine and biology.
General subjects of interest include the design, characterization, testing, modeling and clinical validation of microfabricated systems, and their integration on-chip and in larger functional units. The specific interests of the Journal include systems for neural stimulation and recording, bioseparation technologies such as nanofilters and electrophoretic equipment, miniaturized analytic and DNA identification systems, biosensors, and micro/nanotechnologies for cell and tissue research, tissue engineering, cell transplantation, and the controlled release of drugs and biological molecules.
Contributions reporting on fundamental and applied investigations of the material science, biochemistry, and physics of biomedical microdevices and nanotechnology are encouraged. A non-exhaustive list of fields of interest includes: nanoparticle synthesis, characterization, and validation of therapeutic or imaging efficacy in animal models; biocompatibility; biochemical modification of microfabricated devices, with reference to non-specific protein adsorption, and the active immobilization and patterning of proteins on micro/nanofabricated surfaces; the dynamics of fluids in micro-and-nano-fabricated channels; the electromechanical and structural response of micro/nanofabricated systems; the interactions of microdevices with cells and tissues, including biocompatibility and biodegradation studies; variations in the characteristics of the systems as a function of the micro/nanofabrication parameters.