Vibration signal analysis of planetary gear with amplitude, frequency and phase modulation

IF 0.3 4区 工程技术 Q4 ACOUSTICS Noise Control Engineering Journal Pub Date : 2021-11-01 DOI:10.3397/1/376946
Hai-Zhen Sun, Wei Liu
{"title":"Vibration signal analysis of planetary gear with amplitude, frequency and phase modulation","authors":"Hai-Zhen Sun, Wei Liu","doi":"10.3397/1/376946","DOIUrl":null,"url":null,"abstract":"In this paper, the vibration signal of planetary gear with amplitude, frequency and phase modulation is studied. The proposed mathematical model is employed to in- vestigate the modulation behavior of planetary gear. Based on this model, the ampli- tude modulation (AM) sidebands are\n analyzed to verify the correctness of theoretical calculation by Inalpolat and Kahraman. Then, the frequency modulation (FM) side- bands and phase modulation (PM) sidebands are also illustrated through an exam- ple analysis. The effects of parameters of planetary gear such as number of planets,\n teeth of sun and planet phasing relationships on the AM, FM and PM sidebands are analyzed. Finally, the specific expression of transmission error, time-varying mesh stiffness and dynamic mesh force including gear manufacturing error is developed. Time history signal and acceleration spectra\n of gear mesh interface excitations including AM, FM and PM are investigated for the meshes of sun-planet and ring- planet. The results show that gear parameters have important influence on the mod- ulation behavior. Additionally, manufacturing errors can be introduced to predict the sidebands\n of planetary gear. The amplitude, frequency and phase modulation study are extremely significant for the noise and vibration reduction, especially the fault diagnosis of planetary gear","PeriodicalId":49748,"journal":{"name":"Noise Control Engineering Journal","volume":"1 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Noise Control Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3397/1/376946","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, the vibration signal of planetary gear with amplitude, frequency and phase modulation is studied. The proposed mathematical model is employed to in- vestigate the modulation behavior of planetary gear. Based on this model, the ampli- tude modulation (AM) sidebands are analyzed to verify the correctness of theoretical calculation by Inalpolat and Kahraman. Then, the frequency modulation (FM) side- bands and phase modulation (PM) sidebands are also illustrated through an exam- ple analysis. The effects of parameters of planetary gear such as number of planets, teeth of sun and planet phasing relationships on the AM, FM and PM sidebands are analyzed. Finally, the specific expression of transmission error, time-varying mesh stiffness and dynamic mesh force including gear manufacturing error is developed. Time history signal and acceleration spectra of gear mesh interface excitations including AM, FM and PM are investigated for the meshes of sun-planet and ring- planet. The results show that gear parameters have important influence on the mod- ulation behavior. Additionally, manufacturing errors can be introduced to predict the sidebands of planetary gear. The amplitude, frequency and phase modulation study are extremely significant for the noise and vibration reduction, especially the fault diagnosis of planetary gear
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有振幅、频率和相位调制的行星齿轮振动信号分析
本文研究了带幅、频、相位调制的行星齿轮振动信号。利用所建立的数学模型对行星齿轮的调制特性进行了研究。在此基础上,对调幅(AM)边带进行了分析,验证了Inalpolat和Kahraman理论计算的正确性。然后,通过实例分析说明了调频(FM)边带和相位调制(PM)边带。分析了行星齿轮的行星数、太阳齿数和行星相位关系等参数对调幅、调频和调频侧带的影响。最后给出了包含齿轮加工误差的传动误差、时变啮合刚度和动啮合力的具体表达式。研究了太阳行星和环行星齿轮啮合界面的调幅、调频和调频激励时程信号和加速度谱。结果表明,齿轮参数对模态性能有重要影响。此外,还可以引入制造误差来预测行星齿轮的侧带。调幅、调频、调相位的研究对行星齿轮的降噪减振,特别是故障诊断具有重要意义
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Noise Control Engineering Journal
Noise Control Engineering Journal 工程技术-工程:综合
CiteScore
0.90
自引率
25.00%
发文量
37
审稿时长
3 months
期刊介绍: NCEJ is the pre-eminent academic journal of noise control. It is the International Journal of the Institute of Noise Control Engineering of the USA. It is also produced with the participation and assistance of the Korean Society of Noise and Vibration Engineering (KSNVE). NCEJ reaches noise control professionals around the world, covering over 50 national noise control societies and institutes. INCE encourages you to submit your next paper to NCEJ. Choosing NCEJ: Provides the opportunity to reach a global audience of NCE professionals, academics, and students; Enhances the prestige of your work; Validates your work by formal peer review.
期刊最新文献
Research on fast optimal reference sensor placement in active road noise control Warmstarting strategies for convex optimization based multi-channel constrained active noise control filter design A constrained multi-channel hear-through filter design approach using active control formulations Effect of geometrical defects on the acoustical transport properties of periodic porous absorbers manufactured using stereolithography Design and analysis of periodic acoustic metamaterial sound insulator using finite element method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1