Mathematical model of fluid flow in a double constricted tapered tube with permeable boundary

IF 1.4 4区 工程技术 Q2 ENGINEERING, MULTIDISCIPLINARY International Journal of Nonlinear Sciences and Numerical Simulation Pub Date : 2022-07-11 DOI:10.1515/ijnsns-2021-0244
Varunkumar Merugu, Muthu Poosan
{"title":"Mathematical model of fluid flow in a double constricted tapered tube with permeable boundary","authors":"Varunkumar Merugu, Muthu Poosan","doi":"10.1515/ijnsns-2021-0244","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, a mathematical model for the steady laminar, incompressible and Newtonian fluid flow in a proximal renal tubule is presented. In this, the tubule is considered as a tapered tube with double constriction and permeable boundary. The impact of the fluid reabsorption across the tubule wall is assumed as the occurrence of exponentially decreasing flow at each cross-section. The present model is formulated through the Navier–Stokes equations, under the appropriate boundary conditions. A regular perturbation technique is used to obtain the approximate solutions. This study brings out the significant impacts of reabsorption coefficient (α) and tapered angle (ϕ) on the flow variables such as velocities, the drop in pressure, and wall shear stress are discussed through graphs. The streamlines are also plotted to understand the influence of the reabsorption and tapering phenomena on the flow.","PeriodicalId":50304,"journal":{"name":"International Journal of Nonlinear Sciences and Numerical Simulation","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2022-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nonlinear Sciences and Numerical Simulation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/ijnsns-2021-0244","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In this paper, a mathematical model for the steady laminar, incompressible and Newtonian fluid flow in a proximal renal tubule is presented. In this, the tubule is considered as a tapered tube with double constriction and permeable boundary. The impact of the fluid reabsorption across the tubule wall is assumed as the occurrence of exponentially decreasing flow at each cross-section. The present model is formulated through the Navier–Stokes equations, under the appropriate boundary conditions. A regular perturbation technique is used to obtain the approximate solutions. This study brings out the significant impacts of reabsorption coefficient (α) and tapered angle (ϕ) on the flow variables such as velocities, the drop in pressure, and wall shear stress are discussed through graphs. The streamlines are also plotted to understand the influence of the reabsorption and tapering phenomena on the flow.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有可渗透边界的双收缩锥形管中流体流动的数学模型
摘要本文建立了近端肾小管内稳态层流、不可压缩和牛顿流体流动的数学模型。在这种情况下,小管被认为是一个具有双重收缩和可渗透边界的锥形管。跨小管壁的流体再吸收的影响被假设为在每个横截面处发生指数递减的流动。本模型是通过Navier-Stokes方程在适当的边界条件下建立的。利用正则摄动技术得到近似解。本研究通过图表讨论了再吸收系数(α)和锥角(ξ)对流速、压降和壁剪切应力等流动变量的显著影响。还绘制了流线,以了解再吸收和锥形现象对流量的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.80
自引率
6.70%
发文量
117
审稿时长
13.7 months
期刊介绍: The International Journal of Nonlinear Sciences and Numerical Simulation publishes original papers on all subjects relevant to nonlinear sciences and numerical simulation. The journal is directed at Researchers in Nonlinear Sciences, Engineers, and Computational Scientists, Economists, and others, who either study the nature of nonlinear problems or conduct numerical simulations of nonlinear problems.
期刊最新文献
Frontmatter Frontmatter Frontmatter Frontmatter Frontmatter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1