Gold nanoparticles (AuNPs) and graphene oxide heterostructures with gold film coupling for an enhanced sensitivity surface plasmon resonance (SPR) fiber sensor
{"title":"Gold nanoparticles (AuNPs) and graphene oxide heterostructures with gold film coupling for an enhanced sensitivity surface plasmon resonance (SPR) fiber sensor","authors":"Zhou Zhao, Qi Wang","doi":"10.1080/10739149.2022.2044845","DOIUrl":null,"url":null,"abstract":"Abstract Scholars in the field of surface plasmon resonance (SPR) sensors have long been devoted into tackling the question of improving sensitivity while maintaining high-level stability and re-usability. Presented in this paper is a highly sensible SPR fiber sensor established on gold nanoparticle (AuNPs)/graphene oxide (GO) heterostructures and Au film coupling enhancement. The local electric field enhancement of the gold nanoparticle/graphene oxide heterostructure and gold film coupling, together with the sensitivity of the sensor, was analyzed using a finite element method. Theoretical results have provided evidence that this structure is efficient in enhancing the surface plasmon polariton (SPP) coupling, the local electric field, and the depth of electric field propagation outwards, while significantly improving the sensitivity of the sensor. Sensors with single- and double-layer gold nanoparticle/graphene oxide and enhanced Au film coupling were prepared with refractive index (RI) sensitivities of 2899.4 nm/RIU and 3436.2 nm/RIU, respectively, 37.92% and 63.46% higher than for conventional gold film sensors. Due to the chemical bonding of graphene oxide, the materials on the sensor have shown considerably robust interconnections, and the performance of the sensor remains almost unaffected after many measurements. Promising stability and reusability have been demonstrated, presenting favorable prospects for practical applications.","PeriodicalId":13547,"journal":{"name":"Instrumentation Science & Technology","volume":"50 1","pages":"530 - 542"},"PeriodicalIF":1.3000,"publicationDate":"2022-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Instrumentation Science & Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10739149.2022.2044845","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 7
Abstract
Abstract Scholars in the field of surface plasmon resonance (SPR) sensors have long been devoted into tackling the question of improving sensitivity while maintaining high-level stability and re-usability. Presented in this paper is a highly sensible SPR fiber sensor established on gold nanoparticle (AuNPs)/graphene oxide (GO) heterostructures and Au film coupling enhancement. The local electric field enhancement of the gold nanoparticle/graphene oxide heterostructure and gold film coupling, together with the sensitivity of the sensor, was analyzed using a finite element method. Theoretical results have provided evidence that this structure is efficient in enhancing the surface plasmon polariton (SPP) coupling, the local electric field, and the depth of electric field propagation outwards, while significantly improving the sensitivity of the sensor. Sensors with single- and double-layer gold nanoparticle/graphene oxide and enhanced Au film coupling were prepared with refractive index (RI) sensitivities of 2899.4 nm/RIU and 3436.2 nm/RIU, respectively, 37.92% and 63.46% higher than for conventional gold film sensors. Due to the chemical bonding of graphene oxide, the materials on the sensor have shown considerably robust interconnections, and the performance of the sensor remains almost unaffected after many measurements. Promising stability and reusability have been demonstrated, presenting favorable prospects for practical applications.
期刊介绍:
Instrumentation Science & Technology is an internationally acclaimed forum for fast publication of critical, peer reviewed manuscripts dealing with innovative instrument design and applications in chemistry, physics biotechnology and environmental science. Particular attention is given to state-of-the-art developments and their rapid communication to the scientific community.
Emphasis is on modern instrumental concepts, though not exclusively, including detectors, sensors, data acquisition and processing, instrument control, chromatography, electrochemistry, spectroscopy of all types, electrophoresis, radiometry, relaxation methods, thermal analysis, physical property measurements, surface physics, membrane technology, microcomputer design, chip-based processes, and more.
Readership includes everyone who uses instrumental techniques to conduct their research and development. They are chemists (organic, inorganic, physical, analytical, nuclear, quality control) biochemists, biotechnologists, engineers, and physicists in all of the instrumental disciplines mentioned above, in both the laboratory and chemical production environments. The journal is an important resource of instrument design and applications data.