{"title":"Remote sensing to assess the risk for cultural heritage: forecasting potential collapses due to rainfall in historic fortifications","authors":"M. Moreno, R. Ortiz, P. Ortiz","doi":"10.1108/ijbpa-03-2022-0040","DOIUrl":null,"url":null,"abstract":"PurposeHeavy rainfall is one of the main causes of the degradation of historic rammed Earth architecture. For this reason, ensuring the conservation thereof entails understanding the factors involved in these risk situations. The purpose of this study is to research three past events in which rainfall caused damage and collapse to historic rammed Earth fortifications in Andalusia in order to analyse whether it is possible to prevent similar situations from occurring in the future.Design/methodology/approachThe three case studies analysed are located in the south of Spain and occurred between 2017 and 2021. The hazard presented by rainfall within this context has been obtained from Art-Risk 3.0 (Registration No. 201999906530090). The vulnerability of the structures has been assessed with the Art-Risk 1 model. To characterise the strength, duration, and intensity of precipitation events, a workflow for the statistical use of GPM and GSMaP satellite resources has been designed, validated, and tested. The strength of the winds has been evaluated from data from ground-based weather stations.FindingsGSMaP precipitation data is very similar to data from ground-based weather stations. Regarding the three risk events analysed, although they occurred in areas with a torrential rainfall hazard, the damage was caused by non-intense rainfall that did not exceed 5 mm/hour. The continuation of the rainfall for several days and the poor state of conservation of the walls seem to be the factors that triggered the collapses that fundamentally affected the restoration mortars.Originality/valueA workflow applied to vulnerability and hazard analysis is presented, which validates the large-scale use of satellite images for past and present monitoring of heritage structure risk situations due to rain.","PeriodicalId":44905,"journal":{"name":"International Journal of Building Pathology and Adaptation","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2022-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Building Pathology and Adaptation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ijbpa-03-2022-0040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 3
Abstract
PurposeHeavy rainfall is one of the main causes of the degradation of historic rammed Earth architecture. For this reason, ensuring the conservation thereof entails understanding the factors involved in these risk situations. The purpose of this study is to research three past events in which rainfall caused damage and collapse to historic rammed Earth fortifications in Andalusia in order to analyse whether it is possible to prevent similar situations from occurring in the future.Design/methodology/approachThe three case studies analysed are located in the south of Spain and occurred between 2017 and 2021. The hazard presented by rainfall within this context has been obtained from Art-Risk 3.0 (Registration No. 201999906530090). The vulnerability of the structures has been assessed with the Art-Risk 1 model. To characterise the strength, duration, and intensity of precipitation events, a workflow for the statistical use of GPM and GSMaP satellite resources has been designed, validated, and tested. The strength of the winds has been evaluated from data from ground-based weather stations.FindingsGSMaP precipitation data is very similar to data from ground-based weather stations. Regarding the three risk events analysed, although they occurred in areas with a torrential rainfall hazard, the damage was caused by non-intense rainfall that did not exceed 5 mm/hour. The continuation of the rainfall for several days and the poor state of conservation of the walls seem to be the factors that triggered the collapses that fundamentally affected the restoration mortars.Originality/valueA workflow applied to vulnerability and hazard analysis is presented, which validates the large-scale use of satellite images for past and present monitoring of heritage structure risk situations due to rain.
期刊介绍:
The International Journal of Building Pathology and Adaptation publishes findings on contemporary and original research towards sustaining, maintaining and managing existing buildings. The journal provides an interdisciplinary approach to the study of buildings, their performance and adaptation in order to develop appropriate technical and management solutions. This requires an holistic understanding of the complex interactions between the materials, components, occupants, design and environment, demanding the application and development of methodologies for diagnosis, prognosis and treatment in this multidisciplinary area. With rapid technological developments, a changing climate and more extreme weather, coupled with developing societal demands, the challenges to the professions responsible are complex and varied; solutions need to be rigorously researched and tested to navigate the dynamic context in which today''s buildings are to be sustained. Within this context, the scope and coverage of the journal incorporates the following indicative topics: • Behavioural and human responses • Building defects and prognosis • Building adaptation and retrofit • Building conservation and restoration • Building Information Modelling (BIM) • Building and planning regulations and legislation • Building technology • Conflict avoidance, management and disputes resolution • Digital information and communication technologies • Education and training • Environmental performance • Energy management • Health, safety and welfare issues • Healthy enclosures • Innovations and innovative technologies • Law and practice of dilapidation • Maintenance and refurbishment • Materials testing • Policy formulation and development • Project management • Resilience • Structural considerations • Surveying methodologies and techniques • Sustainability and climate change • Valuation and financial investment