Parametric investigation of combustion instabilities in a single-element lean direct injection combustor

IF 2.1 4区 工程技术 Q3 ENGINEERING, MECHANICAL International Journal of Spray and Combustion Dynamics Pub Date : 2018-07-13 DOI:10.1177/1756827718785851
Rohan M. Gejji, Cheng Huang, C. Fugger, Changjin Yoon, W. Anderson
{"title":"Parametric investigation of combustion instabilities in a single-element lean direct injection combustor","authors":"Rohan M. Gejji, Cheng Huang, C. Fugger, Changjin Yoon, W. Anderson","doi":"10.1177/1756827718785851","DOIUrl":null,"url":null,"abstract":"Self-excited combustion dynamics in a liquid-fueled lean direct injection combustor at high pressure (1 MPa) are described. Studied variables include combustor and air plenum length, inlet air temperature, equivalence ratio, fuel nozzle location, and fuel composition. Measured pressure oscillations were dependent on combustor geometry and ranged from about 1% of mean chamber pressure at low equivalence ratio, up to 20% at high equivalence ratio. In the most unstable cases, strong pressure modes were measured throughout the frequency spectrum including a band around 1.2–1.5 kHz representing the 4th longitudinal mode, and another band around 7 kHz. The oscillation amplitudes have a non-monotonic dependency on air temperature, and are affected by the placement of the fuel nozzle relative to the throat of the subsonic swirling air flow. The parametric survey provides a rich dataset suitable for validating high-fidelity simulations and their subsequent use in analyzing and interpreting the complex combustion dynamics.","PeriodicalId":49046,"journal":{"name":"International Journal of Spray and Combustion Dynamics","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2018-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1756827718785851","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Spray and Combustion Dynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/1756827718785851","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 11

Abstract

Self-excited combustion dynamics in a liquid-fueled lean direct injection combustor at high pressure (1 MPa) are described. Studied variables include combustor and air plenum length, inlet air temperature, equivalence ratio, fuel nozzle location, and fuel composition. Measured pressure oscillations were dependent on combustor geometry and ranged from about 1% of mean chamber pressure at low equivalence ratio, up to 20% at high equivalence ratio. In the most unstable cases, strong pressure modes were measured throughout the frequency spectrum including a band around 1.2–1.5 kHz representing the 4th longitudinal mode, and another band around 7 kHz. The oscillation amplitudes have a non-monotonic dependency on air temperature, and are affected by the placement of the fuel nozzle relative to the throat of the subsonic swirling air flow. The parametric survey provides a rich dataset suitable for validating high-fidelity simulations and their subsequent use in analyzing and interpreting the complex combustion dynamics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
单元稀薄直喷燃烧室燃烧不稳定性的参数研究
高压下液体燃料稀薄直喷燃烧器的自激燃烧动力学(1 MPa)。研究的变量包括燃烧器和空气室长度、进气温度、当量比、燃料喷嘴位置和燃料成分。测得的压力振荡取决于燃烧器的几何形状,范围从低当量比时平均燃烧室压力的1%到高当量比时的20%。在最不稳定的情况下,在整个频谱中测量到强压力模式,包括1.2–1.5左右的频带 kHz表示第四纵向模式,另一个频带约为7 kHz。振荡幅度对空气温度具有非单调依赖性,并且受到燃料喷嘴相对于亚音速涡流喉部的位置的影响。参数调查提供了一个丰富的数据集,适用于验证高保真度模拟及其随后在分析和解释复杂燃烧动力学中的使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Spray and Combustion Dynamics
International Journal of Spray and Combustion Dynamics THERMODYNAMICS-ENGINEERING, MECHANICAL
CiteScore
2.20
自引率
12.50%
发文量
21
审稿时长
>12 weeks
期刊介绍: International Journal of Spray and Combustion Dynamics is a peer-reviewed open access journal on fundamental and applied research in combustion and spray dynamics. Fundamental topics include advances in understanding unsteady combustion, combustion instability and noise, flame-acoustic interaction and its active and passive control, duct acoustics...
期刊最新文献
Comparison of acoustic, optical, and heat release rate based flame transfer functions for a lean-burn injector under engine-like conditions Numerical study of the linear and non-linear damping in an acoustically forced cold-flow test rig with coupled cavities Intermittency transition to azimuthal instability in a turbulent annular combustor Network- and CFD/CAA-modelling of the high frequency flame response in multi-jet combustors Towards a momentum potential theory for reacting flows
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1