The Effects of Estimating a Photoionization Parameter within a Physics-Based Model using Data Assimilation

IF 3.4 2区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Journal of Space Weather and Space Climate Pub Date : 2023-07-07 DOI:10.1051/swsc/2023019
D. Hodyss, D. Allen, D. Tyndall, P. Caffrey, S. McDonald
{"title":"The Effects of Estimating a Photoionization Parameter within a Physics-Based Model using Data Assimilation","authors":"D. Hodyss, D. Allen, D. Tyndall, P. Caffrey, S. McDonald","doi":"10.1051/swsc/2023019","DOIUrl":null,"url":null,"abstract":"Data assimilation (DA) is the process of merging information from prediction models with noisy observations to produce an estimate of the state of a physical system.  In ionospheric physics-based models, the solar ionizing irradiance is commonly estimated from a solar index like F10.7.  The goal of this work is to provide the fundamental understanding necessary to appreciate how a DA algorithm responds to estimating an external parameter driving the model’s interpretation of this solar ionizing irradiance.  Therefore, in this work we allow the DA system to find the F10.7 value that delivers the degree of photoionization that leads to a predicted electron density field that best matches the observations.  To this end, we develop a heuristic model of the ionosphere along the magnetic equator that contains physics from solar forcing and recombination/plasma diffusion, which allows us to explore the impacts of strongly forced system dynamics on DA.  This framework was carefully crafted to be both linear and Gaussian, which allows us to use a Kalman filter to clearly see how: 1) while recombination acts as a sink on the information in the initial condition for ionospheric field variables, recombination does not impact the information in parameter estimates in the same way, 2) when solar forcing dominates the electron density field, the prior covariance matrix becomes dominated by its leading eigenvector whose structure is directly related to that of the solar forcing, 3) estimation of parameters for forcing terms leads to a time-lag in the state estimate relative to the truth, 4) the performance of a DA system in this regime is determined by the relative dominance of solar forcing and recombination to that of the smaller-scale processes and 5) the most impactful observations on the electron density field and on the solar forcing parameter are those observations on the sunlit side of the ionosphere.  These findings are then illustrated in a full physics-based ionospheric model using an ensemble Kalman filter DA scheme.","PeriodicalId":17034,"journal":{"name":"Journal of Space Weather and Space Climate","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2023-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Space Weather and Space Climate","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1051/swsc/2023019","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Data assimilation (DA) is the process of merging information from prediction models with noisy observations to produce an estimate of the state of a physical system.  In ionospheric physics-based models, the solar ionizing irradiance is commonly estimated from a solar index like F10.7.  The goal of this work is to provide the fundamental understanding necessary to appreciate how a DA algorithm responds to estimating an external parameter driving the model’s interpretation of this solar ionizing irradiance.  Therefore, in this work we allow the DA system to find the F10.7 value that delivers the degree of photoionization that leads to a predicted electron density field that best matches the observations.  To this end, we develop a heuristic model of the ionosphere along the magnetic equator that contains physics from solar forcing and recombination/plasma diffusion, which allows us to explore the impacts of strongly forced system dynamics on DA.  This framework was carefully crafted to be both linear and Gaussian, which allows us to use a Kalman filter to clearly see how: 1) while recombination acts as a sink on the information in the initial condition for ionospheric field variables, recombination does not impact the information in parameter estimates in the same way, 2) when solar forcing dominates the electron density field, the prior covariance matrix becomes dominated by its leading eigenvector whose structure is directly related to that of the solar forcing, 3) estimation of parameters for forcing terms leads to a time-lag in the state estimate relative to the truth, 4) the performance of a DA system in this regime is determined by the relative dominance of solar forcing and recombination to that of the smaller-scale processes and 5) the most impactful observations on the electron density field and on the solar forcing parameter are those observations on the sunlit side of the ionosphere.  These findings are then illustrated in a full physics-based ionospheric model using an ensemble Kalman filter DA scheme.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用数据同化在基于物理的模型中估计光电离参数的影响
数据同化(DA)是将来自预测模型的信息与噪声观测相结合,以产生对物理系统状态的估计的过程。在基于电离层物理学的模型中,太阳电离辐照度通常是根据像F10.7这样的太阳指数来估计的。这项工作的目标是提供必要的基本理解,以了解DA算法如何响应估计驱动模型解释太阳电离辐照度的外部参数。因此,在这项工作中,我们允许DA系统找到F10.7值,该值提供了光电离度,从而产生与观测结果最匹配的预测电子密度场。为此,我们开发了一个磁赤道电离层的启发式模型,该模型包含来自太阳强迫和复合/等离子体扩散的物理,使我们能够探索强强迫系统动力学对DA的影响。该框架被精心设计为线性和高斯,这使我们能够使用卡尔曼滤波器来清楚地看到:1)当重组在电离层场变量的初始条件下充当信息的汇点时,重组不会以同样的方式影响参数估计中的信息,2)当太阳作用力主导电子密度场时,先验协方差矩阵由其结构与太阳强迫的结构直接相关的前导特征向量支配,3)强迫项的参数估计导致状态估计相对于事实的时间滞后,4)DA系统在这种情况下的性能是由太阳强迫和重组相对于较小规模过程的相对优势决定的,5)对电子密度场和太阳强迫参数最具影响力的观测是在电离层阳光一侧的观测。然后,使用集合卡尔曼滤波器DA方案,在基于物理的电离层模型中说明了这些发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Space Weather and Space Climate
Journal of Space Weather and Space Climate ASTRONOMY & ASTROPHYSICS-GEOCHEMISTRY & GEOPHYSICS
CiteScore
6.90
自引率
6.10%
发文量
40
审稿时长
8 weeks
期刊介绍: The Journal of Space Weather and Space Climate (SWSC) is an international multi-disciplinary and interdisciplinary peer-reviewed open access journal which publishes papers on all aspects of space weather and space climate from a broad range of scientific and technical fields including solar physics, space plasma physics, aeronomy, planetology, radio science, geophysics, biology, medicine, astronautics, aeronautics, electrical engineering, meteorology, climatology, mathematics, economy, informatics.
期刊最新文献
Helio1D modeling of temporal variation of solar wind: interfacing between Multi-VP and 1D MHD for future operational forecasting at L1 On the Uncertain Intensity Estimate of the 1859 Carrington Storm The Nature of the mesoscale field-aligned currents in the auroral oval for positive IMF BZ: More frequent occurrence in the dawnside sector than in the duskside sector 3D pressure-corrected ballistic extrapolation of solar wind speed in the inner heliosphere Using sunRunner3D to interpret the global structure of the heliosphere from in-situ measurements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1