{"title":"Distributed estimation with empirical likelihood","authors":"Qianqian Liu, Zhouping Li","doi":"10.1002/cjs.11706","DOIUrl":null,"url":null,"abstract":"<p>With the development of science and technology, massive datasets stored in multiple machines are increasingly prevalent. It is known that traditional statistical methods may be infeasible for analyzing large datasets owing to excessive computing time, memory limitations, communication costs, and privacy concerns. This article develops divide-and-conquer empirical likelihood (DEL) and divide-and-conquer exponentially tilted empirical likelihood (DETEL) methods for the distributed computing setting. We investigate the theoretical properties of the DEL and DETEL estimators. In particular, we derive upper bounds for the mean squared errors of the DEL and DETEL estimators, and, under some mild conditions, we prove the consistency and the asymptotic normality of the proposed estimators. Simulation studies and a real data analysis are carried out to demonstrate the finite-sample performance of the proposed methods.</p>","PeriodicalId":55281,"journal":{"name":"Canadian Journal of Statistics-Revue Canadienne De Statistique","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2022-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Statistics-Revue Canadienne De Statistique","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cjs.11706","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1
Abstract
With the development of science and technology, massive datasets stored in multiple machines are increasingly prevalent. It is known that traditional statistical methods may be infeasible for analyzing large datasets owing to excessive computing time, memory limitations, communication costs, and privacy concerns. This article develops divide-and-conquer empirical likelihood (DEL) and divide-and-conquer exponentially tilted empirical likelihood (DETEL) methods for the distributed computing setting. We investigate the theoretical properties of the DEL and DETEL estimators. In particular, we derive upper bounds for the mean squared errors of the DEL and DETEL estimators, and, under some mild conditions, we prove the consistency and the asymptotic normality of the proposed estimators. Simulation studies and a real data analysis are carried out to demonstrate the finite-sample performance of the proposed methods.
期刊介绍:
The Canadian Journal of Statistics is the official journal of the Statistical Society of Canada. It has a reputation internationally as an excellent journal. The editorial board is comprised of statistical scientists with applied, computational, methodological, theoretical and probabilistic interests. Their role is to ensure that the journal continues to provide an international forum for the discipline of Statistics.
The journal seeks papers making broad points of interest to many readers, whereas papers making important points of more specific interest are better placed in more specialized journals. The levels of innovation and impact are key in the evaluation of submitted manuscripts.