A. Barreiro, R. Cela-Dablanca, C. Nebot, Lucía Rodríguez-López, V. Santás-Miguel, M. Arias-Estévez, M. Fernández‐Sanjurjo, Avelino Núñez-Delgado, E. Álvarez-Rodríguez
{"title":"Occurrence of Nine Antibiotics in Different Kinds of Sewage Sludge, Soils, Corn and Grapes After Sludge Spreading","authors":"A. Barreiro, R. Cela-Dablanca, C. Nebot, Lucía Rodríguez-López, V. Santás-Miguel, M. Arias-Estévez, M. Fernández‐Sanjurjo, Avelino Núñez-Delgado, E. Álvarez-Rodríguez","doi":"10.3389/sjss.2022.10741","DOIUrl":null,"url":null,"abstract":"The huge worldwide use of antibiotics triggers the accumulation of these substances in sludge from wastewater treatment plants (WWTP) and the possible contamination of soils amended with it, as well as of crops growing in these soils. In this work we analyzed the presence of the antibiotics amoxicillin (AMO), cefuroxime (CEF), ciprofloxacin (CIP), clarithromycin (CLA), levofloxacin (LEV), lincomycin (LIN), norfloxacin (NOR), sulfadiazine (SUL), and trimethoprim (TRI), in sludge from different WWTPs in Galicia (NW Spain), as well as in sludge technically treated by waste-managers, in soils where treated sludge was applied, and in crops (corn and vineyard) growing in the amended areas. The antibiotics were quantified by means of high resolution HPLC-mass-chromatography. The results indicate that almost all the sludge samples contained antibiotics, being ciprofloxacin and levofloxacin the most abundant reaching maximum values of 623 and 893 ng/g, respectively. The sludge treatment significantly reduced the number and the concentrations of antibiotics. In 12% of the soil samples where sludge was applied, some antibiotics were detected, but always in small concentrations. Regarding the crops, no antibiotic was detected in the roots, stalk, leaves and grain of corn, neither in grapes sampled in vineyards. It can be concluded that the treatments currently applied in the WWTPs under study are not totally effective in removing antibiotics from the sludge, although the findings of this research suggest that the additional specific treatment of the sludge derived from these WWTPs is effective in reducing the risk of environmental pollution due to a variety of antibiotics, and specifically in the case of soils amended with these organic materials and crops growing on it.","PeriodicalId":43464,"journal":{"name":"Spanish Journal of Soil Science","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2022-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spanish Journal of Soil Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/sjss.2022.10741","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 8
Abstract
The huge worldwide use of antibiotics triggers the accumulation of these substances in sludge from wastewater treatment plants (WWTP) and the possible contamination of soils amended with it, as well as of crops growing in these soils. In this work we analyzed the presence of the antibiotics amoxicillin (AMO), cefuroxime (CEF), ciprofloxacin (CIP), clarithromycin (CLA), levofloxacin (LEV), lincomycin (LIN), norfloxacin (NOR), sulfadiazine (SUL), and trimethoprim (TRI), in sludge from different WWTPs in Galicia (NW Spain), as well as in sludge technically treated by waste-managers, in soils where treated sludge was applied, and in crops (corn and vineyard) growing in the amended areas. The antibiotics were quantified by means of high resolution HPLC-mass-chromatography. The results indicate that almost all the sludge samples contained antibiotics, being ciprofloxacin and levofloxacin the most abundant reaching maximum values of 623 and 893 ng/g, respectively. The sludge treatment significantly reduced the number and the concentrations of antibiotics. In 12% of the soil samples where sludge was applied, some antibiotics were detected, but always in small concentrations. Regarding the crops, no antibiotic was detected in the roots, stalk, leaves and grain of corn, neither in grapes sampled in vineyards. It can be concluded that the treatments currently applied in the WWTPs under study are not totally effective in removing antibiotics from the sludge, although the findings of this research suggest that the additional specific treatment of the sludge derived from these WWTPs is effective in reducing the risk of environmental pollution due to a variety of antibiotics, and specifically in the case of soils amended with these organic materials and crops growing on it.
期刊介绍:
The Spanish Journal of Soil Science (SJSS) is a peer-reviewed journal with open access for the publication of Soil Science research, which is published every four months. This publication welcomes works from all parts of the world and different geographic areas. It aims to publish original, innovative, and high-quality scientific papers related to field and laboratory research on all basic and applied aspects of Soil Science. The journal is also interested in interdisciplinary studies linked to soil research, short communications presenting new findings and applications, and invited state of art reviews. The journal focuses on all the different areas of Soil Science represented by the Spanish Society of Soil Science: soil genesis, morphology and micromorphology, physics, chemistry, biology, mineralogy, biochemistry and its functions, classification, survey, and soil information systems; soil fertility and plant nutrition, hydrology and geomorphology; soil evaluation and land use planning; soil protection and conservation; soil degradation and remediation; soil quality; soil-plant relationships; soils and land use change; sustainability of ecosystems; soils and environmental quality; methods of soil analysis; pedometrics; new techniques and soil education. Other fields with growing interest include: digital soil mapping, soil nanotechnology, the modelling of biological and biochemical processes, mechanisms and processes responsible for the mobilization and immobilization of nutrients, organic matter stabilization, biogeochemical nutrient cycles, the influence of climatic change on soil processes and soil-plant relationships, carbon sequestration, and the role of soils in climatic change and ecological and environmental processes.