Calender barring review with experiences

IF 0.6 4区 农林科学 Q4 MATERIALS SCIENCE, PAPER & WOOD Tappi Journal Pub Date : 2022-08-01 DOI:10.32964/tj21.7.377
J. Zwart
{"title":"Calender barring review with experiences","authors":"J. Zwart","doi":"10.32964/tj21.7.377","DOIUrl":null,"url":null,"abstract":"Excessive calender vibration affects all styles of calender stacks from single to multi-nip, all hard rolls, or a combination of hard and soft rolls. Calender vibration can be forced vibration or self-excited vibration. Forced vibration occurs at the first few harmonics of the calender roll rotational speeds and is caused by imbalance, misalignment, eccentricity, etc. Self-excited vibration, the focus of this paper, occurs at higher frequencies.\n Feedback paths for self-excited vibration must be understood in order to ameliorate the problem. This is presented in the context of the historical development of the theory of self-excited feedback mechanisms, followed by a survey of self-excited feedback mechanisms in various types of calender stacks. Methodology to determine which feedback path is present and techniques to control or eliminate the resulting vibration follow. To obtain a flavor of the types of problems faced and practical remedial actions, a variety of experiences with barring issues are provided.","PeriodicalId":22255,"journal":{"name":"Tappi Journal","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tappi Journal","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.32964/tj21.7.377","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
引用次数: 0

Abstract

Excessive calender vibration affects all styles of calender stacks from single to multi-nip, all hard rolls, or a combination of hard and soft rolls. Calender vibration can be forced vibration or self-excited vibration. Forced vibration occurs at the first few harmonics of the calender roll rotational speeds and is caused by imbalance, misalignment, eccentricity, etc. Self-excited vibration, the focus of this paper, occurs at higher frequencies. Feedback paths for self-excited vibration must be understood in order to ameliorate the problem. This is presented in the context of the historical development of the theory of self-excited feedback mechanisms, followed by a survey of self-excited feedback mechanisms in various types of calender stacks. Methodology to determine which feedback path is present and techniques to control or eliminate the resulting vibration follow. To obtain a flavor of the types of problems faced and practical remedial actions, a variety of experiences with barring issues are provided.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
日历禁止回顾经验
压延机振动过大会影响所有类型的压延机,从单压延机到多压延机,所有硬轧辊,或软硬轧辊的组合。压延机振动可分为强迫振动或自激振动。强迫振动发生在压延机辊转速的前几个谐波处,是由不平衡、不对中、偏心等引起的。自激振动是本文研究的重点,它发生在较高的频率。为了改善这一问题,必须了解自激振动的反馈路径。这是在自激反馈机制理论的历史发展背景下提出的,其次是对各种类型的压延机堆栈中的自激反馈机制的调查。确定反馈路径的方法以及控制或消除由此产生的振动的技术。为了获得所面临的问题类型和实际补救措施的味道,提供了各种关于限制问题的经验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Tappi Journal
Tappi Journal 工程技术-材料科学:纸与木材
CiteScore
1.30
自引率
16.70%
发文量
59
审稿时长
6-12 weeks
期刊介绍: An internationally recognized technical publication for over 60 years, TAPPI Journal (TJ) publishes the latest and most relevant research on the forest products and related industries. A stringent peer-review process and distinguished editorial board of academic and industry experts set TAPPI Journal apart as a reliable source for impactful basic and applied research and technical reviews. Available at no charge to TAPPI members, each issue of TAPPI Journal features research in pulp, paper, packaging, tissue, nonwovens, converting, bioenergy, nanotechnology or other innovative cellulosic-based products and technologies. Publishing in TAPPI Journal delivers your research to a global audience of colleagues, peers and employers.
期刊最新文献
Rice straw-based sustainable food packaging material with improved strength and barrier properties: Development and characterization Kraft pulp viscosity as a predictor of paper strength: Its uses and abuses Using bleaching stage models for benchmarking hardwood ECF bleach plants Pulp and paper mills: The original biorefineries — past performance and limitations to future opportunities Cross-flow separation characteristics and piloting of graphene oxide nanofiltration membrane sheets and tubes for kraft black liquor concentration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1