A. Alkaim, F. H. Abdulrazzak, Shaimaa M. Essa, Usama S. Altimari, Montather F. Ramadan, Aseel M. Aljeboree
{"title":"Methacrylic Acid-Acrylamide based ZnO Hydrogel Nanocomposite Assisted Photocatalytic Decolorization of Methylene Blue Dye","authors":"A. Alkaim, F. H. Abdulrazzak, Shaimaa M. Essa, Usama S. Altimari, Montather F. Ramadan, Aseel M. Aljeboree","doi":"10.25258/ijpqa.14.2.06","DOIUrl":null,"url":null,"abstract":"In this research, preparation of methacrylic acid-acrylamide based ZnO hydrogel nanocomposite (MAA-AM)/ZnO hydrogel nanocomposite by way of co-polymerization via used acrylate acid (AA) (or acrylate salt) (AA) or methacrylic acid (MAA)) and acrylamide (AM). Nanocomposites based on acrylate are characterized via being hydrophilic and able to retain water. Nanocomposite properties were studied using different techniques (FE-SEM, TEM, and EDX). The photocatalytic degradation of methylene blue MB dye under different conditions was studied using nanocomposite like time of irradiation, mass of catalyst (MAA- AM)/ZnO hydrogel nanocomposite, initial MB dye concentration onto photocatalytic degradation and reactivation were studied. The result increases the photocatalytic degradation with the rise weight of catalyst (MAA- AM)/ZnO hydrogel nanocomposite range (0.1–0.25 g). Too, a decrease in photocatalytic degradation was observed with an increase in MB. Observed that after reuse, ((MAA- AM)/ZnO) nanocomposite hydrogel appear photocatalytic efficiency from of the use 1 to 6 cycle 87.88 to 58.87%, showing that ((MAA- AM)/ZnO hydrogel nanocomposite surface appear good stability.","PeriodicalId":14260,"journal":{"name":"International Journal of Pharmaceutical Quality Assurance","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pharmaceutical Quality Assurance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25258/ijpqa.14.2.06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0
Abstract
In this research, preparation of methacrylic acid-acrylamide based ZnO hydrogel nanocomposite (MAA-AM)/ZnO hydrogel nanocomposite by way of co-polymerization via used acrylate acid (AA) (or acrylate salt) (AA) or methacrylic acid (MAA)) and acrylamide (AM). Nanocomposites based on acrylate are characterized via being hydrophilic and able to retain water. Nanocomposite properties were studied using different techniques (FE-SEM, TEM, and EDX). The photocatalytic degradation of methylene blue MB dye under different conditions was studied using nanocomposite like time of irradiation, mass of catalyst (MAA- AM)/ZnO hydrogel nanocomposite, initial MB dye concentration onto photocatalytic degradation and reactivation were studied. The result increases the photocatalytic degradation with the rise weight of catalyst (MAA- AM)/ZnO hydrogel nanocomposite range (0.1–0.25 g). Too, a decrease in photocatalytic degradation was observed with an increase in MB. Observed that after reuse, ((MAA- AM)/ZnO) nanocomposite hydrogel appear photocatalytic efficiency from of the use 1 to 6 cycle 87.88 to 58.87%, showing that ((MAA- AM)/ZnO hydrogel nanocomposite surface appear good stability.
期刊介绍:
INTERNATIONAL JOURNAL OF PHARMACEUTICAL QUALITY ASSURANCE is a quarterly international journal publishing the finest peer-reviewed research in the field of Pharmaceutical Quality Assurance and Pharmaceutical Analysis on the basis of its originality, importance, disciplinary interest, timeliness, accessibility, elegance, and surprising conclusions. IJPQA also provides rapid, authoritative, insightful and arresting news and interpretation of topical and coming trends affecting science, scientists and the wider public.