{"title":"A Fourier-Legendre spectral method for approximating the minimizers of 𝜎_{2,𝑝}-energy","authors":"M. Taghavi, M. Shahrokhi-Dehkordi","doi":"10.1090/qam/1674","DOIUrl":null,"url":null,"abstract":"<p>This paper proposes a Fourier-Legendre spectral method to find the minimizers of a variational problem, called <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"sigma Subscript 2 comma p\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>σ<!-- σ --></mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>2</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mi>p</mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">\\sigma _{2,p}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-energy, in polar coordinates. Let <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper X subset-of double-struck upper R Superscript n\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">X</mml:mi>\n </mml:mrow>\n </mml:mrow>\n <mml:mo>⊂<!-- ⊂ --></mml:mo>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">R</mml:mi>\n </mml:mrow>\n <mml:mi>n</mml:mi>\n </mml:msup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">{\\mathbb {X}}\\subset \\mathbb {R}^n</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> be a bounded Lipschitz domain and consider the energy functional <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis 1.1 right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mn>1.1</mml:mn>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">(1.1)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> whose integrand is defined by <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"bold upper W left-parenthesis nabla u left-parenthesis x right-parenthesis right-parenthesis colon-equal left-parenthesis sigma 2 left-parenthesis u right-parenthesis right-parenthesis Superscript StartFraction p Over 2 EndFraction Baseline plus normal upper Phi left-parenthesis det nabla u right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"bold\">W</mml:mi>\n </mml:mrow>\n </mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi mathvariant=\"normal\">∇<!-- ∇ --></mml:mi>\n <mml:mi>u</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>x</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>≔</mml:mo>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msub>\n <mml:mi>σ<!-- σ --></mml:mi>\n <mml:mn>2</mml:mn>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>u</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:msup>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mfrac>\n <mml:mi>p</mml:mi>\n <mml:mn>2</mml:mn>\n </mml:mfrac>\n </mml:mrow>\n </mml:msup>\n <mml:mo>+</mml:mo>\n <mml:mi mathvariant=\"normal\">Φ<!-- Φ --></mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mo movablelimits=\"true\" form=\"prefix\">det</mml:mo>\n <mml:mi mathvariant=\"normal\">∇<!-- ∇ --></mml:mi>\n <mml:mi>u</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">{\\mathbf {W}}(\\nabla u(x))≔(\\sigma _2(u))^{\\frac {p}{2}}+\\Phi (\\det \\nabla u)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> over an appropriate space of admissible maps, <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper A Subscript p Baseline left-parenthesis double-struck upper X right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">A</mml:mi>\n </mml:mrow>\n <mml:mi>p</mml:mi>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">X</mml:mi>\n </mml:mrow>\n </mml:mrow>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathcal {A}_p({\\mathbb {X}})</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. Using Fourier and Legendre interpolation errors, we obtain an error estimate for the energy functional and prove a convergence theorem for the proposed method. Furthermore, we apply the gradient descent method to solve a nonlinear algebraic system which is obtained by discretizing the Euler-Lagrange equations. The numerical experiments are performed to demonstrate the accuracy and effectiveness of our method.</p>","PeriodicalId":20964,"journal":{"name":"Quarterly of Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly of Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/qam/1674","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposes a Fourier-Legendre spectral method to find the minimizers of a variational problem, called σ2,p\sigma _{2,p}-energy, in polar coordinates. Let X⊂Rn{\mathbb {X}}\subset \mathbb {R}^n be a bounded Lipschitz domain and consider the energy functional (1.1)(1.1) whose integrand is defined by W(∇u(x))≔(σ2(u))p2+Φ(det∇u){\mathbf {W}}(\nabla u(x))≔(\sigma _2(u))^{\frac {p}{2}}+\Phi (\det \nabla u) over an appropriate space of admissible maps, Ap(X)\mathcal {A}_p({\mathbb {X}}). Using Fourier and Legendre interpolation errors, we obtain an error estimate for the energy functional and prove a convergence theorem for the proposed method. Furthermore, we apply the gradient descent method to solve a nonlinear algebraic system which is obtained by discretizing the Euler-Lagrange equations. The numerical experiments are performed to demonstrate the accuracy and effectiveness of our method.
期刊介绍:
The Quarterly of Applied Mathematics contains original papers in applied mathematics which have a close connection with applications. An author index appears in the last issue of each volume.
This journal, published quarterly by Brown University with articles electronically published individually before appearing in an issue, is distributed by the American Mathematical Society (AMS). In order to take advantage of some features offered for this journal, users will occasionally be linked to pages on the AMS website.