Tuğberk Andaç Topkan, Nesrin Erdoğan, Berrak Barutcu, E. Cindil, E. T. Tali, Y. Karaman
{"title":"Volumetric Assessment of Hippocampus and Subcortical Gray Matter Regions in Alzheimer Disease and Amnestic Mild Cognitive Impairment","authors":"Tuğberk Andaç Topkan, Nesrin Erdoğan, Berrak Barutcu, E. Cindil, E. T. Tali, Y. Karaman","doi":"10.1097/WNN.0000000000000296","DOIUrl":null,"url":null,"abstract":"Background: Quantitative MRI assessment methods have limited utility due to a lack of standardized methods and measures for Alzheimer disease (AD) and amnestic mild cognitive impairment (aMCI). Objective: To employ a relatively new and easy-to-use quantitative assessment method to reveal volumetric changes in subcortical gray matter (GM) regions, hippocampus, and global intracranial structures as well as the diagnostic performance and best thresholds of total hippocampal volumetry in individuals with AD and those with aMCI. Method: A total of 74 individuals—37 with mild to moderate AD, 19 with aMCI, and 18 with normal cognition (NC)—underwent a 3T MRI. Fully automated segmentation and volumetric measurements were performed. Results: The AD and aMCI groups had smaller volumes of amygdala, nucleus accumbens, and hippocampus compared with the NC group. These same two groups had significantly smaller total white matter volume than the NC group. The AD group had smaller total GM volume compared with the aMCI and NC groups. The thalamus in the AD group showed a subtle atrophy. There were no significant volumetric differences in the caudate nucleus, putamen, or globus pallidus between the groups. Conclusion: The amygdala and nucleus accumbens showed atrophy comparable to the hippocampal atrophy in both the AD and aMCI groups, which may contribute to cognitive impairment. Hippocampal volumetry is a reliable tool for differentiating between AD and NC groups but has substantially less power in differentiating between AD and aMCI groups. The loss of total GM volume differentiates AD from aMCI and NC.","PeriodicalId":50671,"journal":{"name":"Cognitive and Behavioral Neurology","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive and Behavioral Neurology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/WNN.0000000000000296","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Quantitative MRI assessment methods have limited utility due to a lack of standardized methods and measures for Alzheimer disease (AD) and amnestic mild cognitive impairment (aMCI). Objective: To employ a relatively new and easy-to-use quantitative assessment method to reveal volumetric changes in subcortical gray matter (GM) regions, hippocampus, and global intracranial structures as well as the diagnostic performance and best thresholds of total hippocampal volumetry in individuals with AD and those with aMCI. Method: A total of 74 individuals—37 with mild to moderate AD, 19 with aMCI, and 18 with normal cognition (NC)—underwent a 3T MRI. Fully automated segmentation and volumetric measurements were performed. Results: The AD and aMCI groups had smaller volumes of amygdala, nucleus accumbens, and hippocampus compared with the NC group. These same two groups had significantly smaller total white matter volume than the NC group. The AD group had smaller total GM volume compared with the aMCI and NC groups. The thalamus in the AD group showed a subtle atrophy. There were no significant volumetric differences in the caudate nucleus, putamen, or globus pallidus between the groups. Conclusion: The amygdala and nucleus accumbens showed atrophy comparable to the hippocampal atrophy in both the AD and aMCI groups, which may contribute to cognitive impairment. Hippocampal volumetry is a reliable tool for differentiating between AD and NC groups but has substantially less power in differentiating between AD and aMCI groups. The loss of total GM volume differentiates AD from aMCI and NC.
期刊介绍:
Cognitive and Behavioral Neurology (CBN) is a forum for advances in the neurologic understanding and possible treatment of human disorders that affect thinking, learning, memory, communication, and behavior. As an incubator for innovations in these fields, CBN helps transform theory into practice. The journal serves clinical research, patient care, education, and professional advancement.
The journal welcomes contributions from neurology, cognitive neuroscience, neuropsychology, neuropsychiatry, and other relevant fields. The editors particularly encourage review articles (including reviews of clinical practice), experimental and observational case reports, instructional articles for interested students and professionals in other fields, and innovative articles that do not fit neatly into any category. Also welcome are therapeutic trials and other experimental and observational studies, brief reports, first-person accounts of neurologic experiences, position papers, hypotheses, opinion papers, commentaries, historical perspectives, and book reviews.