P. Winckler, César Esparza, J. Mora, O. Melo, N. Bambach, M. Contreras-López, M. Sactic
{"title":"Impacts in ports on a tectonically active coast for climate-driven projections under the RCP 8.5 scenario: 7 Chilean ports under scrutiny","authors":"P. Winckler, César Esparza, J. Mora, O. Melo, N. Bambach, M. Contreras-López, M. Sactic","doi":"10.1080/21664250.2022.2088194","DOIUrl":null,"url":null,"abstract":"ABSTRACT Economic costs due to operational downtime and wave overtopping under the RCP 8.5 scenario are evaluated at 7 Chilean ports. Wave statistics for a historical period (1985–2004), mid-century (2026–2045), and end-of-century projections (2081–2100) are computed with a Pacific-wide model, forced by wind fields from six General Circulation Models. Offshore waves are then downscaled to each port, where a proxy of downtime is computed by comparing wave heights with vessel berthing criteria. The difference in downtime between the historical and future projections is attributed to climate change. Results show that some ports would reduce and others increase downtime for mid-century projections due to local effects. However, by the end-of-century, all ports would experience a reduction in downtime. Additionally, by mid-century, overtopping would increase in northern ports as a combination of extreme waves and sea-level rise (SLR), while in southern ports, it is expected to be slightly reduced. By the end-of century, overtopping would increase in the whole region, mainly driven by SLR. However, overtopping is significantly altered by coseismic uplift/subsidence that may occur during the design-life of coastal works. Finally, a few practical suggestions aimed atimproving infrastructure management and operational conditions at the analyzed ports are outlined.","PeriodicalId":50673,"journal":{"name":"Coastal Engineering Journal","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2022-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coastal Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/21664250.2022.2088194","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 2
Abstract
ABSTRACT Economic costs due to operational downtime and wave overtopping under the RCP 8.5 scenario are evaluated at 7 Chilean ports. Wave statistics for a historical period (1985–2004), mid-century (2026–2045), and end-of-century projections (2081–2100) are computed with a Pacific-wide model, forced by wind fields from six General Circulation Models. Offshore waves are then downscaled to each port, where a proxy of downtime is computed by comparing wave heights with vessel berthing criteria. The difference in downtime between the historical and future projections is attributed to climate change. Results show that some ports would reduce and others increase downtime for mid-century projections due to local effects. However, by the end-of-century, all ports would experience a reduction in downtime. Additionally, by mid-century, overtopping would increase in northern ports as a combination of extreme waves and sea-level rise (SLR), while in southern ports, it is expected to be slightly reduced. By the end-of century, overtopping would increase in the whole region, mainly driven by SLR. However, overtopping is significantly altered by coseismic uplift/subsidence that may occur during the design-life of coastal works. Finally, a few practical suggestions aimed atimproving infrastructure management and operational conditions at the analyzed ports are outlined.
期刊介绍:
Coastal Engineering Journal is a peer-reviewed medium for the publication of research achievements and engineering practices in the fields of coastal, harbor and offshore engineering. The CEJ editors welcome original papers and comprehensive reviews on waves and currents, sediment motion and morphodynamics, as well as on structures and facilities. Reports on conceptual developments and predictive methods of environmental processes are also published. Topics also include hard and soft technologies related to coastal zone development, shore protection, and prevention or mitigation of coastal disasters. The journal is intended to cover not only fundamental studies on analytical models, numerical computation and laboratory experiments, but also results of field measurements and case studies of real projects.