Niffler: Real-time Device-level Anomalies Detection in Smart Home

IF 2.6 4区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS ACM Transactions on the Web Pub Date : 2023-03-01 DOI:10.1145/3586073
Haohua Du, Yue Wang, Xiaoya Xu, Mingsheng Liu
{"title":"Niffler: Real-time Device-level Anomalies Detection in Smart Home","authors":"Haohua Du, Yue Wang, Xiaoya Xu, Mingsheng Liu","doi":"10.1145/3586073","DOIUrl":null,"url":null,"abstract":"Device-level security has become a major concern in smart home systems. Detecting problems in smart home sytems strives to increase accuracy in near real time without hampering the regular tasks of the smart home. The current state of the art in detecting anomalies in smart home devices is mainly focused on the app level, which provides a basic level of security by assuming that the devices are functioning correctly. However, this approach is insufficient for ensuring the overall security of the system, as it overlooks the possibility of anomalies occurring at the lower layers such as the devices. In this article, we propose a novel notion, correlated graph, and with the aid of that, we develop our system to detect misbehaving devices without modifying the existing system. Our correlated graphs explicitly represent the contextual correlations among smart devices with little knowledge about the system. We further propose a linkage path model and a sensitivity ranking method to assist in detecting the abnormalities. We implement a semi-automatic prototype of our approach, evaluate it in real-world settings, and demonstrate its efficiency, which achieves an accuracy of around 90% in near real time.","PeriodicalId":50940,"journal":{"name":"ACM Transactions on the Web","volume":"17 1","pages":"1 - 27"},"PeriodicalIF":2.6000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on the Web","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3586073","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Device-level security has become a major concern in smart home systems. Detecting problems in smart home sytems strives to increase accuracy in near real time without hampering the regular tasks of the smart home. The current state of the art in detecting anomalies in smart home devices is mainly focused on the app level, which provides a basic level of security by assuming that the devices are functioning correctly. However, this approach is insufficient for ensuring the overall security of the system, as it overlooks the possibility of anomalies occurring at the lower layers such as the devices. In this article, we propose a novel notion, correlated graph, and with the aid of that, we develop our system to detect misbehaving devices without modifying the existing system. Our correlated graphs explicitly represent the contextual correlations among smart devices with little knowledge about the system. We further propose a linkage path model and a sensitivity ranking method to assist in detecting the abnormalities. We implement a semi-automatic prototype of our approach, evaluate it in real-world settings, and demonstrate its efficiency, which achieves an accuracy of around 90% in near real time.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
嗅嗅:智能家居中实时设备级异常检测
设备级安全已成为智能家居系统的主要关注点。智能家居系统中的问题检测力求在不妨碍智能家居常规任务的情况下,近乎实时地提高准确性。目前在智能家居设备中检测异常的最新技术主要集中在应用程序层面,它通过假设设备正常运行来提供基本的安全性。但是,这种方法忽略了设备等底层发生异常的可能性,不足以保证系统的整体安全性。在本文中,我们提出了一个新的概念,关联图,并借助它,我们开发了我们的系统来检测不正常的设备,而不修改现有的系统。我们的相关图明确地表示了对系统知之甚少的智能设备之间的上下文相关性。我们进一步提出了一种链接路径模型和灵敏度排序方法来帮助检测异常。我们实现了该方法的半自动原型,在现实环境中对其进行了评估,并证明了其效率,在接近实时的情况下达到了90%左右的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACM Transactions on the Web
ACM Transactions on the Web 工程技术-计算机:软件工程
CiteScore
4.90
自引率
0.00%
发文量
26
审稿时长
7.5 months
期刊介绍: Transactions on the Web (TWEB) is a journal publishing refereed articles reporting the results of research on Web content, applications, use, and related enabling technologies. Topics in the scope of TWEB include but are not limited to the following: Browsers and Web Interfaces; Electronic Commerce; Electronic Publishing; Hypertext and Hypermedia; Semantic Web; Web Engineering; Web Services; and Service-Oriented Computing XML. In addition, papers addressing the intersection of the following broader technologies with the Web are also in scope: Accessibility; Business Services Education; Knowledge Management and Representation; Mobility and pervasive computing; Performance and scalability; Recommender systems; Searching, Indexing, Classification, Retrieval and Querying, Data Mining and Analysis; Security and Privacy; and User Interfaces. Papers discussing specific Web technologies, applications, content generation and management and use are within scope. Also, papers describing novel applications of the web as well as papers on the underlying technologies are welcome.
期刊最新文献
DCDIMB: Dynamic Community-based Diversified Influence Maximization using Bridge Nodes Know their Customers: An Empirical Study of Online Account Enumeration Attacks Learning Dynamic Multimodal Network Slot Concepts from the Web for Forecasting Environmental, Social and Governance Ratings MuLX-QA: Classifying Multi-Labels and Extracting Rationale Spans in Social Media Posts Heterogeneous Graph Neural Network with Personalized and Adaptive Diversity for News Recommendation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1