Development of biodegradable customized tibial scaffold with advanced architected materials utilizing additive manufacturing.

N. Kladovasilakis, P. Charalampous, A. Boumpakis, T. Kontodina, K. Tsongas, D. Tzetzis, I. Kostavelis, P. Givissis, D. Tzovaras
{"title":"Development of biodegradable customized tibial scaffold with advanced architected materials utilizing additive manufacturing.","authors":"N. Kladovasilakis, P. Charalampous, A. Boumpakis, T. Kontodina, K. Tsongas, D. Tzetzis, I. Kostavelis, P. Givissis, D. Tzovaras","doi":"10.2139/ssrn.4354973","DOIUrl":null,"url":null,"abstract":"In the last decade, the development of customized biodegradable scaffolds and implants has attracted increased scientific interest due to the fact that additive manufacturing technologies allow for the rapid production of implants with high geometric complexity constructed via commercial biodegradable polymers. In this study, innovative designs of tibial scaffold in form of bone-brick configuration were developed to fill the bone gap utilizing advanced architected materials and bio-inspired diffusion canals. The architected materials and canals provide high porosity, as well as a high surface area to volume ratio in the scaffold facilitating that way in the tissue regeneration process and in withstanding the applied external loads. The cellular structures applied in this work were the Schwarz Diamond (SD) and a hybrid SD&FCC hybrid cellular material, which is a completely new architected material that derived from the combination of SD and Face Centered Cubic (FCC) structures. These designs were additively manufactured utilizing two biodegradable materials namely Polylactic acid (PLA) and Polycaprolactone (PCL), using the Fused Filament Fabrication (FFF) technique, in order to avoid the surgery, for the scaffold's removal after the bone regeneration. Furthermore, the additively manufactured scaffolds were examined in terms of compatibility and assembly with the bone's physical model, as well as, in terms of mechanical behavior under realistic static loads. In addition, non-linear finite element models (FEMs) were developed based on the experimental data to accurately simulate the mechanical response of the examined scaffolds. The Finite Element Analysis (FEA) results were compared with the experimental response and afterwards the stress concentration regions were observed and identified. Τhe proposed design of scaffold with SD&FCC lattice structure made of PLA material with a relative density of 20% revealed the best overall performance, showing that it is the most suitable candidate for further investigation (in-vivo test, clinical trials, etc.) and commercialization.","PeriodicalId":94117,"journal":{"name":"Journal of the mechanical behavior of biomedical materials","volume":"141 1","pages":"105796"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the mechanical behavior of biomedical materials","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.2139/ssrn.4354973","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In the last decade, the development of customized biodegradable scaffolds and implants has attracted increased scientific interest due to the fact that additive manufacturing technologies allow for the rapid production of implants with high geometric complexity constructed via commercial biodegradable polymers. In this study, innovative designs of tibial scaffold in form of bone-brick configuration were developed to fill the bone gap utilizing advanced architected materials and bio-inspired diffusion canals. The architected materials and canals provide high porosity, as well as a high surface area to volume ratio in the scaffold facilitating that way in the tissue regeneration process and in withstanding the applied external loads. The cellular structures applied in this work were the Schwarz Diamond (SD) and a hybrid SD&FCC hybrid cellular material, which is a completely new architected material that derived from the combination of SD and Face Centered Cubic (FCC) structures. These designs were additively manufactured utilizing two biodegradable materials namely Polylactic acid (PLA) and Polycaprolactone (PCL), using the Fused Filament Fabrication (FFF) technique, in order to avoid the surgery, for the scaffold's removal after the bone regeneration. Furthermore, the additively manufactured scaffolds were examined in terms of compatibility and assembly with the bone's physical model, as well as, in terms of mechanical behavior under realistic static loads. In addition, non-linear finite element models (FEMs) were developed based on the experimental data to accurately simulate the mechanical response of the examined scaffolds. The Finite Element Analysis (FEA) results were compared with the experimental response and afterwards the stress concentration regions were observed and identified. Τhe proposed design of scaffold with SD&FCC lattice structure made of PLA material with a relative density of 20% revealed the best overall performance, showing that it is the most suitable candidate for further investigation (in-vivo test, clinical trials, etc.) and commercialization.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用增材制造技术开发具有先进建筑材料的可生物降解定制胫骨支架。
在过去的十年中,定制的可生物降解支架和植入物的发展吸引了越来越多的科学兴趣,因为增材制造技术允许通过商业可生物降解聚合物构建具有高几何复杂性的植入物的快速生产。在这项研究中,开发了骨砖结构形式的胫骨支架的创新设计,利用先进的建筑材料和仿生扩散管来填补骨间隙。建筑材料和管道提供高孔隙率,以及支架的高表面积与体积比,促进组织再生过程和承受施加的外部载荷。本研究中应用的细胞结构是Schwarz Diamond (SD)和一种混合SD&FCC混合细胞材料,它是一种由SD和面心立方(FCC)结构结合而成的全新结构材料。这些设计是利用两种可生物降解的材料,即聚乳酸(PLA)和聚己内酯(PCL),使用熔融长丝制造(FFF)技术,为了避免手术,在骨再生后支架的移除。此外,我们还测试了增材制造的支架与骨骼物理模型的相容性和装配性,以及在实际静载荷下的力学性能。此外,基于实验数据建立了非线性有限元模型(fem),以准确模拟所测支架的力学响应。将有限元分析结果与试验响应进行了对比,并对应力集中区域进行了观察和识别。Τhe提出的以相对密度为20%的PLA材料为材料,采用SD&FCC晶格结构的支架设计,整体性能最佳,是最适合进一步研究(体内试验、临床试验等)和商业化的候选材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Corrigendum to "Elastic constants of biogenic calcium carbonate" (155), 106570. Editorial Board An improved trabecular bone model based on Voronoi tessellation. Patient-specific finite element analysis of human corneal lenticules: An experimental and numerical study. Multistep deformation of helical fiber electrospun scaffold toward cardiac patches development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1