Designing of system for high grade heat recovery in thermal coolingsystem for process heat applications

IF 1.1 Q3 Engineering Journal of Thermal Engineering Pub Date : 2023-05-18 DOI:10.18186/thermal.1299161
Alka Solanki, Yash Pal
{"title":"Designing of system for high grade heat recovery in thermal coolingsystem for process heat applications","authors":"Alka Solanki, Yash Pal","doi":"10.18186/thermal.1299161","DOIUrl":null,"url":null,"abstract":"An experimental investigation on design of a vapour absorption system using LiBr-H2Ofor high grade heat recovery in thermal cooling system for process heat applications has been conducted. A 1.5 kW cooling capacityof the LiBr-H2O vapour absorption system has beend esigned and tested under various operating conditions. Generator temperature, absorber tem-perature, condenser temperature and evaporator temperature have been varied and perfor-mance of LiBr-H2O vapour absorption system has been analysed. Experimental results are presented in terms of COP and circulation ratio. Further, to validate the results thermody-namic model is developed using first law of thermodynamics and simulate in Engineering Equation Solver. The COP and the circulation ratio estimated through simulationsand exper-iments have been in good agreement with ±5% standard deviation. Further, this this research work is beneficial for dairy industries in process heat applications and realizing the impor-tance of the need for energy conservation in dairy industries.","PeriodicalId":45841,"journal":{"name":"Journal of Thermal Engineering","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18186/thermal.1299161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

An experimental investigation on design of a vapour absorption system using LiBr-H2Ofor high grade heat recovery in thermal cooling system for process heat applications has been conducted. A 1.5 kW cooling capacityof the LiBr-H2O vapour absorption system has beend esigned and tested under various operating conditions. Generator temperature, absorber tem-perature, condenser temperature and evaporator temperature have been varied and perfor-mance of LiBr-H2O vapour absorption system has been analysed. Experimental results are presented in terms of COP and circulation ratio. Further, to validate the results thermody-namic model is developed using first law of thermodynamics and simulate in Engineering Equation Solver. The COP and the circulation ratio estimated through simulationsand exper-iments have been in good agreement with ±5% standard deviation. Further, this this research work is beneficial for dairy industries in process heat applications and realizing the impor-tance of the need for energy conservation in dairy industries.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于工艺热应用的热冷却系统中的高级热回收系统的设计
在工艺热应用的热冷却系统中,对使用LiBr-H2O的蒸汽吸收系统的设计进行了实验研究。设计并测试了LiBr-H2O蒸汽吸收系统在不同操作条件下的1.5kW冷却能力。改变了发生器温度、吸收器温度、冷凝器温度和蒸发器温度,分析了LiBr-H2O蒸汽吸收系统的性能。根据COP和循环比给出了实验结果。此外,为了验证结果,利用热力学第一定律建立了热力学模型,并在工程方程求解器中进行了模拟。通过模拟和实验估算出的COP和循环比与±5%的标准偏差吻合良好。此外,这项研究工作有利于乳制品行业在工艺热应用中的应用,并认识到乳制品行业节能需求的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.40
自引率
18.20%
发文量
61
审稿时长
4 weeks
期刊介绍: Journal of Thermal Enginering is aimed at giving a recognized platform to students, researchers, research scholars, teachers, authors and other professionals in the field of research in Thermal Engineering subjects, to publish their original and current research work to a wide, international audience. In order to achieve this goal, we will have applied for SCI-Expanded Index in 2021 after having an Impact Factor in 2020. The aim of the journal, published on behalf of Yildiz Technical University in Istanbul-Turkey, is to not only include actual, original and applied studies prepared on the sciences of heat transfer and thermodynamics, and contribute to the literature of engineering sciences on the national and international areas but also help the development of Mechanical Engineering. Engineers and academicians from disciplines of Power Plant Engineering, Energy Engineering, Building Services Engineering, HVAC Engineering, Solar Engineering, Wind Engineering, Nanoengineering, surface engineering, thin film technologies, and Computer Aided Engineering will be expected to benefit from this journal’s outputs.
期刊最新文献
Evaluation of the thermal efficiency of nanofluid flows in flat plate solar collector Experimental investigation of double-glazed double-pass solar airheater (DG-DPSAH) with multi-v ribs having trapezoidal roughness geometry Experimental evaluation of the effect of leakage in scroll compressor Performance enhancement of stepped solar still coupled with evacuated tube collector An experimental investigation to study the performance characteristics of heat pipe using aqueous hybrid nanofluids
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1