Fabrication, Visualization and Analysis of Fluorescein Sodium Encapsulated PLGA@CS Nanoparticles as Model for Photothermomechanical Drug Delivery Using Pulsed 532 nm Laser

M. E. Khosroshahi, M. Mahmoodi
{"title":"Fabrication, Visualization and Analysis of Fluorescein Sodium Encapsulated PLGA@CS Nanoparticles as Model for Photothermomechanical Drug Delivery Using Pulsed 532 nm Laser","authors":"M. E. Khosroshahi, M. Mahmoodi","doi":"10.4236/anp.2018.73005","DOIUrl":null,"url":null,"abstract":"PLGA/CS nanoparticles containing fluorescein sodium as drug model were synthesized and characterized to investigate the feasibility of laser-induced drug delivery using pulse 532 nm. The main objective was to investigate the photothermally-induced mechanical force for transporting the nanoparticles. An argon laser was used to excite the fluorescence of the samples after irradiation. The preliminary results indicated that the drug nanoparticles encapsulated trapped by the cavitation bubbles can be transported by photothermomechanical effect. Different regions of interactions are defined and while in our case, the thermoelastic does not apply due to higher fluences, vaporization and laser-induced thermal breakdown (LITB) including the plasma formation and shock waves played an important and major role. Threshold fluences of 2.8, 18 and 102 Jcm-2 corresponding to 0.28, 1.8 and 10 GWcm-2 and 3.8, 30, and 171 MPa are determined for ablation, vaporization and LITB mechanisms respectively. The secondary microbubbles due to explosion of the primary transient cavitation bubbles played a key role in delivery process. Despite the dominant argon laser brightness, the laser-induced fluorescence spectroscopy (LIFS) demonstrated the fluorescence emission of the cavitation bubbles carrying due to the drug nanoparticles entrapped within the biogelatin after exposure to laser radiation, the irradiation, which confirms the possibility of transport of drug nanoparticles by laser cavitation. Finally, it is suggested that the nature of such photothermal and photo non-thermal mechanical effects is governed and influenced by determining and criticizing in terms of the type of nanomaterial as well as their synthesis process engineering and fabrication as they can be made case sensitive by selecting different types of materials for a specific application.","PeriodicalId":71264,"journal":{"name":"纳米粒子(英文)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"纳米粒子(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/anp.2018.73005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

PLGA/CS nanoparticles containing fluorescein sodium as drug model were synthesized and characterized to investigate the feasibility of laser-induced drug delivery using pulse 532 nm. The main objective was to investigate the photothermally-induced mechanical force for transporting the nanoparticles. An argon laser was used to excite the fluorescence of the samples after irradiation. The preliminary results indicated that the drug nanoparticles encapsulated trapped by the cavitation bubbles can be transported by photothermomechanical effect. Different regions of interactions are defined and while in our case, the thermoelastic does not apply due to higher fluences, vaporization and laser-induced thermal breakdown (LITB) including the plasma formation and shock waves played an important and major role. Threshold fluences of 2.8, 18 and 102 Jcm-2 corresponding to 0.28, 1.8 and 10 GWcm-2 and 3.8, 30, and 171 MPa are determined for ablation, vaporization and LITB mechanisms respectively. The secondary microbubbles due to explosion of the primary transient cavitation bubbles played a key role in delivery process. Despite the dominant argon laser brightness, the laser-induced fluorescence spectroscopy (LIFS) demonstrated the fluorescence emission of the cavitation bubbles carrying due to the drug nanoparticles entrapped within the biogelatin after exposure to laser radiation, the irradiation, which confirms the possibility of transport of drug nanoparticles by laser cavitation. Finally, it is suggested that the nature of such photothermal and photo non-thermal mechanical effects is governed and influenced by determining and criticizing in terms of the type of nanomaterial as well as their synthesis process engineering and fabrication as they can be made case sensitive by selecting different types of materials for a specific application.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
荧光素钠包封PLGA@CS纳米粒子的制备、可视化及分析
合成并表征了以荧光素钠为药物模型的PLGA/CS纳米粒子,以研究532nm脉冲激光诱导药物递送的可行性。主要目的是研究用于传输纳米颗粒的光热诱导的机械力。使用氩激光器来激发照射后样品的荧光。初步结果表明,被空化气泡捕获的药物纳米颗粒可以通过光热机械效应进行传输。定义了不同的相互作用区域,而在我们的情况下,由于更高的通量、蒸发和激光诱导的热击穿(LITB),包括等离子体的形成和冲击波,热弹性不适用。消融、汽化和LITB机制的阈值通量分别为2.8、18和102 Jcm-2,对应于0.28、1.8和10 GWcm-2以及3.8、30和171 MPa。初级瞬态空化气泡爆炸产生的次级微气泡在输送过程中起着关键作用。尽管氩激光亮度占主导地位,但激光诱导荧光光谱(LIFS)证明,在暴露于激光辐射后,由于药物纳米颗粒被截留在生物明胶内,携带的空化气泡发出荧光,这证实了通过激光空化传输药物纳米颗粒的可能性。最后,有人提出,这种光热和光非热机械效应的性质是由纳米材料的类型及其合成、工艺工程和制造方面的确定和批评来控制和影响的,因为可以通过为特定应用选择不同类型的材料来使其区分大小写。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
106
期刊最新文献
Performance of Rhodamine-Sensitized Solar Cells Fabricated with Silver Nanoparticles Experimental Study of Effluent Salty Wastewater Treatment from a Solar Desalination Pond Green Synthesis and Antibacterial Properties of Silver Nanoparticles from Eugenia uniflora Fruit Extract Improved Catalytic Reaction of Biotemplated Palladium Nanoparticles through Immobilized Metal Affinity Purification Synthesis, Characterization, and Effects of Morphology on the Magnetic Application Base Properties of Pure Nickel Oxide (NiO) and Cobalt-Doped Nickel Oxide/Nickel Hydroxide (CoxNi1-xO/Ni(OH)2) Nanocomposites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1