Improved Preprocessing Strategy under Different Obscure Weather Conditions for Augmenting Automatic License Plate Recognition

Suvodip Som, Pritam Kumar Gayen, Sudip Das
{"title":"Improved Preprocessing Strategy under Different Obscure Weather Conditions for Augmenting Automatic License Plate Recognition","authors":"Suvodip Som, Pritam Kumar Gayen, Sudip Das","doi":"10.46604/peti.2023.10594","DOIUrl":null,"url":null,"abstract":"Automatic license plate recognition (ALPR) systems are widely used for various applications, including traffic control, law enforcement, and toll collection. However, the performance of ALPR systems is often compromised in challenging weather and lighting conditions. This research aims to improve the effectiveness of ALPR systems in foggy, low-light, and rainy weather conditions using a hybrid preprocessing methodology. The research proposes the combination of dark channel prior (DCP), non-local means denoising (NMD) technique, and adaptive histogram equalization (AHE) algorithms in CIELAB color space. And used the Python programming language comparisons for SSIM and PSNR performance. The results showed that this hybrid approach is not merely robust to a variety of challenging conditions, including challenging weather and lighting conditions but significantly more accurate for existing ALPR systems.","PeriodicalId":33402,"journal":{"name":"Proceedings of Engineering and Technology Innovation","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Engineering and Technology Innovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46604/peti.2023.10594","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Automatic license plate recognition (ALPR) systems are widely used for various applications, including traffic control, law enforcement, and toll collection. However, the performance of ALPR systems is often compromised in challenging weather and lighting conditions. This research aims to improve the effectiveness of ALPR systems in foggy, low-light, and rainy weather conditions using a hybrid preprocessing methodology. The research proposes the combination of dark channel prior (DCP), non-local means denoising (NMD) technique, and adaptive histogram equalization (AHE) algorithms in CIELAB color space. And used the Python programming language comparisons for SSIM and PSNR performance. The results showed that this hybrid approach is not merely robust to a variety of challenging conditions, including challenging weather and lighting conditions but significantly more accurate for existing ALPR systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
改进的不同模糊天气条件下增强车牌自动识别的预处理策略
自动车牌识别(ALPR)系统广泛应用于各种应用,包括交通控制、执法和收费。然而,在恶劣的天气和光照条件下,ALPR系统的性能往往会受到影响。本研究旨在利用混合预处理方法提高ALPR系统在多雾、低光和多雨天气条件下的有效性。研究提出了在CIELAB色彩空间中结合暗通道先验(DCP)、非局部均值去噪(NMD)和自适应直方图均衡(AHE)算法。并使用Python编程语言对SSIM和PSNR性能进行比较。结果表明,这种混合方法不仅对各种具有挑战性的条件(包括恶劣的天气和照明条件)具有鲁棒性,而且对现有的ALPR系统具有更高的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
12
审稿时长
18 weeks
期刊最新文献
Quantitative Shaking Evaluation of Bracing-Strengthened and Base-Isolated Buildings Using Seismic Intensity Level Prediction of Crop Leaf Health by MCCM and Histogram Learning Model Using Leaf Region A Self-Repairing Natural Rubber as a Novel Material Pad to Develop an Electro-Surgical Training Prototype Application of Genetic Algorithm and Analytical Method to Determine the Appropriate Locations and Capacities for Distributed Energy System A Fake Profile Detection Model Using Multistage Stacked Ensemble Classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1