{"title":"An Efficient Technique for Double Faults Detection and their Locations Identification in Digital Microfluidic Biochip","authors":"A. Saha, M. Majumder","doi":"10.5875/AUSMT.V9I2.1889","DOIUrl":null,"url":null,"abstract":"Progress of digital microfluidic biochip (DMFB) confronts for the defective and specious electrodes. Not only these hinder the routing of droplets but also the completion time of assay is influenced by those defective electrodes. As Microfluidic-based biochips are broadly used in the revolution of medical diagnosis, gigantic parallel DNA analysis, automatic drug discovery and real-time biomolecular recognition including numerous safety-critical applications, this biochip definitely responsible for appropriate and accurate result. Prior accepting it for perceptive purposes the microfluidic biochip must confirm its precision and robustness. In this article, an aspect of fast fault diagnosis appliance for perceiving double faults and recognizing the fault locations within the biochip is introduced. If the biochip is defect free then the proposed approach computes the traversal time as well. The suggested result outpoured that the propound technique is competent, efficacious as well as delineate signifying improvement over the surviving method. Furthermore this paper added expedient reconfiguration contrivance.","PeriodicalId":38109,"journal":{"name":"International Journal of Automation and Smart Technology","volume":"9 1","pages":"65-75"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Automation and Smart Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5875/AUSMT.V9I2.1889","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 2
Abstract
Progress of digital microfluidic biochip (DMFB) confronts for the defective and specious electrodes. Not only these hinder the routing of droplets but also the completion time of assay is influenced by those defective electrodes. As Microfluidic-based biochips are broadly used in the revolution of medical diagnosis, gigantic parallel DNA analysis, automatic drug discovery and real-time biomolecular recognition including numerous safety-critical applications, this biochip definitely responsible for appropriate and accurate result. Prior accepting it for perceptive purposes the microfluidic biochip must confirm its precision and robustness. In this article, an aspect of fast fault diagnosis appliance for perceiving double faults and recognizing the fault locations within the biochip is introduced. If the biochip is defect free then the proposed approach computes the traversal time as well. The suggested result outpoured that the propound technique is competent, efficacious as well as delineate signifying improvement over the surviving method. Furthermore this paper added expedient reconfiguration contrivance.
期刊介绍:
International Journal of Automation and Smart Technology (AUSMT) is a peer-reviewed, open-access journal devoted to publishing research papers in the fields of automation and smart technology. Currently, the journal is abstracted in Scopus, INSPEC and DOAJ (Directory of Open Access Journals). The research areas of the journal include but are not limited to the fields of mechatronics, automation, ambient Intelligence, sensor networks, human-computer interfaces, and robotics. These technologies should be developed with the major purpose to increase the quality of life as well as to work towards environmental, economic and social sustainability for future generations. AUSMT endeavors to provide a worldwide forum for the dynamic exchange of ideas and findings from research of different disciplines from around the world. Also, AUSMT actively seeks to encourage interaction and cooperation between academia and industry along the fields of automation and smart technology. For the aforementioned purposes, AUSMT maps out 5 areas of interests. Each of them represents a pillar for better future life: - Intelligent Automation Technology. - Ambient Intelligence, Context Awareness, and Sensor Networks. - Human-Computer Interface. - Optomechatronic Modules and Systems. - Robotics, Intelligent Devices and Systems.