Deep learning‐based training data augmentation combined with post‐classification improves the classification accuracy for dominant and scattered invasive forest tree species
Szilárd Balázs Likó, I. Holb, Viktor Oláh, P. Burai, Szilárd Szabó
{"title":"Deep learning‐based training data augmentation combined with post‐classification improves the classification accuracy for dominant and scattered invasive forest tree species","authors":"Szilárd Balázs Likó, I. Holb, Viktor Oláh, P. Burai, Szilárd Szabó","doi":"10.1002/rse2.365","DOIUrl":null,"url":null,"abstract":"Species composition of forests is a very important component from the point of view of nature conservation and forestry. We aimed to identify 10 tree species in a hilly forest stand using a hyperspectral aerial image with a particular focus on two invasive species, namely Ailanthus tree and black locust. Deep learning‐based training data augmentation (TDA) and post‐classification techniques were tested with Random Forest and Support Vector Machine (SVM) classifiers. SVM had better performance with 81.6% overall accuracy (OA). TDA increased the OA to 82.5% and post‐classification with segmentation improved the total accuracy to 86.2%. The class‐level performance was more convincing: the invasive Ailanthus trees were identified with 40% higher producer's and user's accuracies (PA and UA) to 70% related to the common technique (using a training dataset and classifying the trees). The PA and UA did not change in the case of the other invasive species, black locust. Accordingly, this new method identifies well Ailanthus, a sparsely distributed species in the area; while it was less efficient with black locust that dominates larger patches in the stand. The combination of the two ancillary steps of hyperspectral image classification proved to be reasonable and can support forest management planning and nature conservation in the future.","PeriodicalId":21132,"journal":{"name":"Remote Sensing in Ecology and Conservation","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing in Ecology and Conservation","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/rse2.365","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Species composition of forests is a very important component from the point of view of nature conservation and forestry. We aimed to identify 10 tree species in a hilly forest stand using a hyperspectral aerial image with a particular focus on two invasive species, namely Ailanthus tree and black locust. Deep learning‐based training data augmentation (TDA) and post‐classification techniques were tested with Random Forest and Support Vector Machine (SVM) classifiers. SVM had better performance with 81.6% overall accuracy (OA). TDA increased the OA to 82.5% and post‐classification with segmentation improved the total accuracy to 86.2%. The class‐level performance was more convincing: the invasive Ailanthus trees were identified with 40% higher producer's and user's accuracies (PA and UA) to 70% related to the common technique (using a training dataset and classifying the trees). The PA and UA did not change in the case of the other invasive species, black locust. Accordingly, this new method identifies well Ailanthus, a sparsely distributed species in the area; while it was less efficient with black locust that dominates larger patches in the stand. The combination of the two ancillary steps of hyperspectral image classification proved to be reasonable and can support forest management planning and nature conservation in the future.
期刊介绍:
emote Sensing in Ecology and Conservation provides a forum for rapid, peer-reviewed publication of novel, multidisciplinary research at the interface between remote sensing science and ecology and conservation. The journal prioritizes findings that advance the scientific basis of ecology and conservation, promoting the development of remote-sensing based methods relevant to the management of land use and biological systems at all levels, from populations and species to ecosystems and biomes. The journal defines remote sensing in its broadest sense, including data acquisition by hand-held and fixed ground-based sensors, such as camera traps and acoustic recorders, and sensors on airplanes and satellites. The intended journal’s audience includes ecologists, conservation scientists, policy makers, managers of terrestrial and aquatic systems, remote sensing scientists, and students.
Remote Sensing in Ecology and Conservation is a fully open access journal from Wiley and the Zoological Society of London. Remote sensing has enormous potential as to provide information on the state of, and pressures on, biological diversity and ecosystem services, at multiple spatial and temporal scales. This new publication provides a forum for multidisciplinary research in remote sensing science, ecological research and conservation science.