Polymath: Low-Latency MPC via Secure Polynomial Evaluations and Its Applications

Donghang Lu, Albert Yu, Aniket Kate, H. K. Maji
{"title":"Polymath: Low-Latency MPC via Secure Polynomial Evaluations and Its Applications","authors":"Donghang Lu, Albert Yu, Aniket Kate, H. K. Maji","doi":"10.2478/popets-2022-0020","DOIUrl":null,"url":null,"abstract":"Abstract While the practicality of secure multi-party computation (MPC) has been extensively analyzed and improved over the past decade, we are hitting the limits of efficiency with the traditional approaches of representing the computed functionalities as generic arithmetic or Boolean circuits. This work follows the design principle of identifying and constructing fast and provably-secure MPC protocols to evaluate useful high-level algebraic abstractions; thus, improving the efficiency of all applications relying on them. We present Polymath, a constant-round secure computation protocol suite for the secure evaluation of (multi-variate) polynomials of scalars and matrices, functionalities essential to numerous data-processing applications. Using precise natural precomputation and high-degree of parallelism prevalent in the modern computing environments, Polymath can make latency of secure polynomial evaluations of scalars and matrices independent of polynomial degree and matrix dimensions. We implement our protocols over the HoneyBadgerMPC library and apply it to two prominent secure computation tasks: privacy-preserving evaluation of decision trees and privacy-preserving evaluation of Markov processes. For the decision tree evaluation problem, we demonstrate the feasibility of evaluating high-depth decision tree models in a general n-party setting. For the Markov process application, we demonstrate that Poly-math can compute large powers of transition matrices with better online time and less communication.","PeriodicalId":74556,"journal":{"name":"Proceedings on Privacy Enhancing Technologies. Privacy Enhancing Technologies Symposium","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings on Privacy Enhancing Technologies. Privacy Enhancing Technologies Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/popets-2022-0020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Abstract While the practicality of secure multi-party computation (MPC) has been extensively analyzed and improved over the past decade, we are hitting the limits of efficiency with the traditional approaches of representing the computed functionalities as generic arithmetic or Boolean circuits. This work follows the design principle of identifying and constructing fast and provably-secure MPC protocols to evaluate useful high-level algebraic abstractions; thus, improving the efficiency of all applications relying on them. We present Polymath, a constant-round secure computation protocol suite for the secure evaluation of (multi-variate) polynomials of scalars and matrices, functionalities essential to numerous data-processing applications. Using precise natural precomputation and high-degree of parallelism prevalent in the modern computing environments, Polymath can make latency of secure polynomial evaluations of scalars and matrices independent of polynomial degree and matrix dimensions. We implement our protocols over the HoneyBadgerMPC library and apply it to two prominent secure computation tasks: privacy-preserving evaluation of decision trees and privacy-preserving evaluation of Markov processes. For the decision tree evaluation problem, we demonstrate the feasibility of evaluating high-depth decision tree models in a general n-party setting. For the Markov process application, we demonstrate that Poly-math can compute large powers of transition matrices with better online time and less communication.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Polymath:基于安全多项式评估的低延迟MPC及其应用
虽然安全多方计算(MPC)的实用性在过去十年中得到了广泛的分析和改进,但我们使用传统的方法将计算功能表示为通用算术或布尔电路,从而达到了效率的极限。本工作遵循识别和构建快速且可证明安全的MPC协议的设计原则,以评估有用的高级代数抽象;从而提高所有依赖于它们的应用程序的效率。我们提出了Polymath,一个恒轮安全计算协议套件,用于安全评估标量和矩阵的(多变量)多项式,对许多数据处理应用至关重要的功能。利用精确的自然预计算和现代计算环境中普遍存在的高度并行性,Polymath可以使标量和矩阵的安全多项式计算延迟与多项式度和矩阵维数无关。我们在HoneyBadgerMPC库上实现了我们的协议,并将其应用于两个重要的安全计算任务:决策树的隐私保护评估和马尔可夫过程的隐私保护评估。对于决策树评估问题,我们证明了在一般n方设置下评估高深度决策树模型的可行性。对于马尔可夫过程的应用,我们证明了Poly-math可以以更好的在线时间和更少的通信计算大幂次的转移矩阵。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
16 weeks
期刊最新文献
Editors' Introduction Compact and Divisible E-Cash with Threshold Issuance On the Robustness of Topics API to a Re-Identification Attack DP-SIPS: A simpler, more scalable mechanism for differentially private partition selection Privacy-Preserving Federated Recurrent Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1