Numerical Solution of MHD Incompressible Convection Flow in Channels

Merve Gürbüz, M. Tezer-Sezgin
{"title":"Numerical Solution of MHD Incompressible Convection Flow in Channels","authors":"Merve Gürbüz, M. Tezer-Sezgin","doi":"10.13052/ejcm2642-2085.2852","DOIUrl":null,"url":null,"abstract":"The purpose of this paper is to study numerically the influence of the magnetic field, buoyancy force and viscous dissipation on the convective flow and temperature of the fluid in a square cavity, lid-driven cavity, and lid-driven cavity with an obstacle at the center. The continuity, momentum and energy equations are coupled including buoyancy and magnetic forces, and energy equation contains Joule heating and viscous dissipation. The equations are solved in terms of stream function, vorticity and temperature by using polynomial radial basis function (RBF) approximation for the inhomogeneity and particular solution. The numerical solutions are obtained for several values of Grashof number (Gr), Hartmann number (M) for fixed Prandtl number Pr = 0:71 and fixed Reynolds number Re = 100 with or without viscous dissipation. It is observed that in the absence of obstacle, viscous dissipation changes the symmetry of the isotherms, and the dominance of buoyancy force increases with an increase in Gr, whereas decreases when the intensity of magnetic field increases. The obstacle in the lid-driven cavity causes a secondary flow on its left part. The effect of moving lid is weakened on the flow and isotherms especially for large Gr when the cavity contains obstacle.","PeriodicalId":45463,"journal":{"name":"European Journal of Computational Mechanics","volume":"1 1","pages":"411–432-411–432"},"PeriodicalIF":1.5000,"publicationDate":"2019-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Computational Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/ejcm2642-2085.2852","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

The purpose of this paper is to study numerically the influence of the magnetic field, buoyancy force and viscous dissipation on the convective flow and temperature of the fluid in a square cavity, lid-driven cavity, and lid-driven cavity with an obstacle at the center. The continuity, momentum and energy equations are coupled including buoyancy and magnetic forces, and energy equation contains Joule heating and viscous dissipation. The equations are solved in terms of stream function, vorticity and temperature by using polynomial radial basis function (RBF) approximation for the inhomogeneity and particular solution. The numerical solutions are obtained for several values of Grashof number (Gr), Hartmann number (M) for fixed Prandtl number Pr = 0:71 and fixed Reynolds number Re = 100 with or without viscous dissipation. It is observed that in the absence of obstacle, viscous dissipation changes the symmetry of the isotherms, and the dominance of buoyancy force increases with an increase in Gr, whereas decreases when the intensity of magnetic field increases. The obstacle in the lid-driven cavity causes a secondary flow on its left part. The effect of moving lid is weakened on the flow and isotherms especially for large Gr when the cavity contains obstacle.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通道内MHD不可压缩对流流动的数值解
本文的目的是数值研究磁场、浮力和粘性耗散对方形腔、盖驱动腔和中心有障碍物的盖驱动腔中流体对流和温度的影响。连续性方程、动量方程和能量方程包括浮力和磁力,能量方程包括焦耳加热和粘性耗散。利用多项式径向基函数(RBF)逼近非均匀性和特定解,从流函数、涡度和温度三个方面对方程进行求解。对于固定的普朗特数Pr=0:71和固定的雷诺数Re=100,在有或没有粘性耗散的情况下,获得了Grashof数(Gr)、Hartmann数(M)的几个值的数值解。观察到,在没有障碍物的情况下,粘性耗散改变了等温线的对称性,浮力的主导地位随着Gr的增加而增加,而随着磁场强度的增加而减少。盖子驱动腔中的障碍物会在其左侧产生二次流。移动盖子对流动和等温线的影响减弱,尤其是当空腔中含有障碍物时,对于大Gr。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.70
自引率
8.30%
发文量
0
期刊最新文献
Evaluation of Piezoelectric-based Composite for Actuator Application via FEM with Thermal Analogy Vortex and Core Detection using Computer Vision and Machine Learning Methods The Impact of Flexural/Torsional Coupling on the Stability of Symmetrical Laminated Plates Static Mechanics and Dynamic Analysis and Control of Bridge Structures Under Multi-Load Coupling Effects Analysis of the Mechanical Characteristics of Tunnels Under the Coupling Effect of Submarine Active Faults and Ground Vibrations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1