{"title":"Effects of water temperature over benthic diatom communities: insights from thermal springs","authors":"C. Delgado, M. Feio, I. Pardo, S. Almeida","doi":"10.1080/17550874.2020.1762133","DOIUrl":null,"url":null,"abstract":"ABSTRACT Background Thermal springs provide extreme ecological conditions for aquatic communities owing to their high water temperature and particular water chemistry. The thermal springs and their connected watercourses provide a thermal laboratory by offering a wide range of temperatures within short spatial distances. To date, the information on how the biodiversity of these springs is related to water temperature or chemistry is limited. Aims We studied the effects of water temperature on diatom community diversity and structure with the objective to supply a baseline for the conservation of thermal springs. Methods We sampled 31 sites of 16 thermal springs across a temperature gradient between 18.5 and 63.0°C in the north-western Iberian Peninsula and related diatom richness and structure to water temperature. Results A total of 124 diatom species were identified in springs with water temperature between 18.5 and 42.4°C. Community diversity decreased with increasing temperature and the highest species richness was found at temperatures ≤ 25°C. Three diatom assemblages were defined, discriminated by temperature ranges (≤25°C, 25–35°C and ≥35°C). Conclusions Water temperature was found to be an important driver of diatom community composition in the thermal systems studied. Temperature affects diatom distribution decreasing diversity with the increase in global water temperature.","PeriodicalId":49691,"journal":{"name":"Plant Ecology & Diversity","volume":"13 1","pages":"325 - 337"},"PeriodicalIF":1.7000,"publicationDate":"2020-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/17550874.2020.1762133","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Ecology & Diversity","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/17550874.2020.1762133","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 11
Abstract
ABSTRACT Background Thermal springs provide extreme ecological conditions for aquatic communities owing to their high water temperature and particular water chemistry. The thermal springs and their connected watercourses provide a thermal laboratory by offering a wide range of temperatures within short spatial distances. To date, the information on how the biodiversity of these springs is related to water temperature or chemistry is limited. Aims We studied the effects of water temperature on diatom community diversity and structure with the objective to supply a baseline for the conservation of thermal springs. Methods We sampled 31 sites of 16 thermal springs across a temperature gradient between 18.5 and 63.0°C in the north-western Iberian Peninsula and related diatom richness and structure to water temperature. Results A total of 124 diatom species were identified in springs with water temperature between 18.5 and 42.4°C. Community diversity decreased with increasing temperature and the highest species richness was found at temperatures ≤ 25°C. Three diatom assemblages were defined, discriminated by temperature ranges (≤25°C, 25–35°C and ≥35°C). Conclusions Water temperature was found to be an important driver of diatom community composition in the thermal systems studied. Temperature affects diatom distribution decreasing diversity with the increase in global water temperature.
期刊介绍:
Plant Ecology and Diversity is an international journal for communicating results and novel ideas in plant science, in print and on-line, six times a year. All areas of plant biology relating to ecology, evolution and diversity are of interest, including those which explicitly deal with today''s highly topical themes, such as biodiversity, conservation and global change. We consider submissions that address fundamental questions which are pertinent to contemporary plant science. Articles concerning extreme environments world-wide are particularly welcome.
Plant Ecology and Diversity considers for publication original research articles, short communications, reviews, and scientific correspondence that explore thought-provoking ideas.
To aid redressing ‘publication bias’ the journal is unique in reporting, in the form of short communications, ‘negative results’ and ‘repeat experiments’ that test ecological theories experimentally, in theoretically flawless and methodologically sound papers. Research reviews and method papers, are also encouraged.
Plant Ecology & Diversity publishes high-quality and topical research that demonstrates solid scholarship. As such, the journal does not publish purely descriptive papers. Submissions are required to focus on research topics that are broad in their scope and thus provide new insights and contribute to theory. The original research should address clear hypotheses that test theory or questions and offer new insights on topics of interest to an international readership.