SOIL STABILIZATION USING SILICON CARBIDE (SIC) NANOPARTICLES: CONFIRMATION USING XRD, SEM, AND FTIR

IF 4.3 3区 工程技术 Q1 ENGINEERING, CIVIL Journal of Civil Engineering and Management Pub Date : 2022-12-16 DOI:10.3846/jcem.2022.18173
A. Alsabhan, J. Qadri, Md. Rehan Sadique, S. Alam, K. Perveen, Abobaker S. Binyahya
{"title":"SOIL STABILIZATION USING SILICON CARBIDE (SIC) NANOPARTICLES: CONFIRMATION USING XRD, SEM, AND FTIR","authors":"A. Alsabhan, J. Qadri, Md. Rehan Sadique, S. Alam, K. Perveen, Abobaker S. Binyahya","doi":"10.3846/jcem.2022.18173","DOIUrl":null,"url":null,"abstract":"The current research focuses on nanoparticles’ ground-improvement potential using clayey soil mixed with varying amounts of the nanoparticles “Silicon Carbide”. With an increase in the amount of nanomaterial, a tendency of improvement has been recorded in liquid and plastic limits, as well as the plasticity index. The maximum reduction in liquid limit (15.8%), plastic limit (13.6%), and plastic index (18.7%) was recorded at 0.25 gm of Silicon Carbide as compared to control (0 gm of SiC). There was a 26.7% and 33.3% increase in the cohesion of soil at 0.25 gm and 0.3 gm of Silicon Carbide, respectively. Furthermore, when the Silicon Carbide content increased from 0.25 gm, the rate of increment of friction angle also increased. It was 87.5% and 137.5% at 0.25 gm and 0.3 gm of Silicon Carbide, respectively. Furthermore, 0.3 gm of Silicon Carbide, is found to be optimal within the scope of the experiment as at this amount of Silicon Carbide both cohesion and angle of friction attained maximum. XRD, SEM, and FTIR were used to confirm the findings. It concludes that by using even a small amount of nanomaterial, an appreciable change in the properties of clayey soil can be obtained in the field.","PeriodicalId":15524,"journal":{"name":"Journal of Civil Engineering and Management","volume":" ","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2022-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Civil Engineering and Management","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3846/jcem.2022.18173","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

The current research focuses on nanoparticles’ ground-improvement potential using clayey soil mixed with varying amounts of the nanoparticles “Silicon Carbide”. With an increase in the amount of nanomaterial, a tendency of improvement has been recorded in liquid and plastic limits, as well as the plasticity index. The maximum reduction in liquid limit (15.8%), plastic limit (13.6%), and plastic index (18.7%) was recorded at 0.25 gm of Silicon Carbide as compared to control (0 gm of SiC). There was a 26.7% and 33.3% increase in the cohesion of soil at 0.25 gm and 0.3 gm of Silicon Carbide, respectively. Furthermore, when the Silicon Carbide content increased from 0.25 gm, the rate of increment of friction angle also increased. It was 87.5% and 137.5% at 0.25 gm and 0.3 gm of Silicon Carbide, respectively. Furthermore, 0.3 gm of Silicon Carbide, is found to be optimal within the scope of the experiment as at this amount of Silicon Carbide both cohesion and angle of friction attained maximum. XRD, SEM, and FTIR were used to confirm the findings. It concludes that by using even a small amount of nanomaterial, an appreciable change in the properties of clayey soil can be obtained in the field.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
碳化硅纳米颗粒对土壤的稳定作用:XRD、SEM和FTIR的证实
目前的研究重点是使用粘土和不同数量的纳米颗粒“碳化硅”混合来改善纳米颗粒的地基潜力。随着纳米材料用量的增加,液限和塑性极限以及塑性指数都有改善的趋势。与对照(0克SiC)相比,0.25克碳化硅的液限(15.8%)、塑性极限(13.6%)和塑性指数(18.7%)的最大降低。0.25克和0.3克碳化硅的土壤内聚力分别增加了26.7%和33.3%。此外,当碳化硅含量从0.25gm增加时,摩擦角的增加速率也增加。在0.25克和0.3克碳化硅的情况下分别为87.5%和137.5%。此外,发现0.3克碳化硅在实验范围内是最佳的,因为在该量的碳化硅下,内聚力和摩擦角都达到最大。使用XRD、SEM和FTIR来证实这些发现。它的结论是,即使使用少量的纳米材料,也可以在现场获得粘性土壤性质的显著变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.70
自引率
4.70%
发文量
0
审稿时长
1.7 months
期刊介绍: The Journal of Civil Engineering and Management is a peer-reviewed journal that provides an international forum for the dissemination of the latest original research, achievements and developments. We publish for researchers, designers, users and manufacturers in the different fields of civil engineering and management. The journal publishes original articles that present new information and reviews. Our objective is to provide essential information and new ideas to help improve civil engineering competency, efficiency and productivity in world markets. The Journal of Civil Engineering and Management publishes articles in the following fields: building materials and structures, structural mechanics and physics, geotechnical engineering, road and bridge engineering, urban engineering and economy, constructions technology, economy and management, information technologies in construction, fire protection, thermoinsulation and renovation of buildings, labour safety in construction.
期刊最新文献
INTEGRATING ENHANCED OPTIMIZATION WITH FINITE ELEMENT ANALYSIS FOR DESIGNING STEEL STRUCTURE WEIGHT UNDER MULTIPLE CONSTRAINTS RANDOM FIELD-BASED TUNNELING INFORMATION MODELING FRAMEWORK FOR PROBABILISTIC SAFETY ASSESSMENT OF SHIELD TUNNELS SHM-BASED PRACTICAL SAFETY EVALUATION AND VIBRATION CONTROL MODEL FOR STEEL PIPES STUDY OF THE INFLUENCE OF METRO LOADS ON THE DESTRUCTION OF NEARBY BUILDINGS AND CONSTRUCTION STRUCTURES USING BIM TECHNOLOGIES PERFORMANCE EVALUATION OF PALM OIL CLINKER AS CEMENT AND SAND REPLACEMENT MATERIALS IN FOAMED CONCRETE
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1