An efficient hybrid PC-SIFT-based feature extraction technique for face recognition

Deepti Ahlawat, Vijay Nehra
{"title":"An efficient hybrid PC-SIFT-based feature extraction technique for face recognition","authors":"Deepti Ahlawat, Vijay Nehra","doi":"10.1504/IJSISE.2017.10008715","DOIUrl":null,"url":null,"abstract":"In this investigation, an efficient hybrid approach involving phase congruency (PC) and shift invariant feature transform (SIFT) for face recognition is presented. The present study exploits the advantages of PC and SIFT together for the purpose of efficient feature extraction for the facial images. The effectiveness of the present work is analysed and compared using other classifiers, i.e. K-means and self-organizing map. The results of this study demonstrate that phase congruency - shift invariant feature transform is robust to expression variations and shows better performance than other comparative methods and achieves good recognition accuracy. Studies are conducted on Japanese female facial expression and Yale databases. The proposed technique has been compared with the existing techniques, and from the experiments, it is observed that the results of the proposed technique are better than the existing techniques.","PeriodicalId":56359,"journal":{"name":"International Journal of Signal and Imaging Systems Engineering","volume":"10 1","pages":"237"},"PeriodicalIF":0.6000,"publicationDate":"2017-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Signal and Imaging Systems Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJSISE.2017.10008715","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

Abstract

In this investigation, an efficient hybrid approach involving phase congruency (PC) and shift invariant feature transform (SIFT) for face recognition is presented. The present study exploits the advantages of PC and SIFT together for the purpose of efficient feature extraction for the facial images. The effectiveness of the present work is analysed and compared using other classifiers, i.e. K-means and self-organizing map. The results of this study demonstrate that phase congruency - shift invariant feature transform is robust to expression variations and shows better performance than other comparative methods and achieves good recognition accuracy. Studies are conducted on Japanese female facial expression and Yale databases. The proposed technique has been compared with the existing techniques, and from the experiments, it is observed that the results of the proposed technique are better than the existing techniques.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种高效的基于混合PC SIFT的人脸识别特征提取技术
在这项研究中,提出了一种有效的混合方法,包括相位一致性(PC)和移位不变特征变换(SIFT)的人脸识别。本研究利用PC和SIFT的优点,对人脸图像进行有效的特征提取。使用其他分类器,即K-means和自组织映射,对当前工作的有效性进行了分析和比较。研究结果表明,相一致-移不变特征变换对表达变化具有较强的鲁棒性,与其他比较方法相比具有更好的性能,并达到了良好的识别精度。对日本女性面部表情和耶鲁大学数据库进行了研究。将所提出的技术与现有技术进行了比较,并从实验中观察到,所提出的方法的结果优于现有技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
0
期刊最新文献
Image correlation, non-uniformly sampled rotation displacement measurement estimation Computational simulation of human fovea Syntactic approach to reconstruct simple and complex medical images Computational simulation of human fovea Syntactic approach to reconstruct simple and complex medical images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1