Engineering a data processing pipeline for an ultra-lightweight lensless fluorescence imaging device with neuronal-cluster resolution

IF 0.8 Q4 ROBOTICS Artificial Life and Robotics Pub Date : 2023-06-12 DOI:10.1007/s10015-023-00875-x
Zihao Yu, Mark Christian S. G. Guinto, Brian Godwin S. Lim, Renzo Roel P. Tan, Junichiro Yoshimoto, Kazushi Ikeda, Yasumi Ohta, Jun Ohta
{"title":"Engineering a data processing pipeline for an ultra-lightweight lensless fluorescence imaging device with neuronal-cluster resolution","authors":"Zihao Yu,&nbsp;Mark Christian S. G. Guinto,&nbsp;Brian Godwin S. Lim,&nbsp;Renzo Roel P. Tan,&nbsp;Junichiro Yoshimoto,&nbsp;Kazushi Ikeda,&nbsp;Yasumi Ohta,&nbsp;Jun Ohta","doi":"10.1007/s10015-023-00875-x","DOIUrl":null,"url":null,"abstract":"<div><p>In working toward the goal of uncovering the inner workings of the brain, various imaging techniques have been the subject of research. Among the prominent technologies are devices that are based on the ability of transgenic animals to signal neuronal activity through fluorescent indicators. This paper investigates the utility of an original ultra-lightweight needle-type device in fluorescence neuroimaging. A generalizable data processing pipeline is proposed to compensate for the reduced image resolution of the lensless device. In particular, a modular solution centered on baseline-induced noise reduction and principal component analysis is designed as a stand-in for physical lenses in the aggregation and quasi-reconstruction of neuronal activity. Data-driven evidence backing the identification of regions of interest is then demonstrated, establishing the relative superiority of the method over neuroscience conventions within comparable contexts.</p></div>","PeriodicalId":46050,"journal":{"name":"Artificial Life and Robotics","volume":"28 3","pages":"483 - 495"},"PeriodicalIF":0.8000,"publicationDate":"2023-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Life and Robotics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s10015-023-00875-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

In working toward the goal of uncovering the inner workings of the brain, various imaging techniques have been the subject of research. Among the prominent technologies are devices that are based on the ability of transgenic animals to signal neuronal activity through fluorescent indicators. This paper investigates the utility of an original ultra-lightweight needle-type device in fluorescence neuroimaging. A generalizable data processing pipeline is proposed to compensate for the reduced image resolution of the lensless device. In particular, a modular solution centered on baseline-induced noise reduction and principal component analysis is designed as a stand-in for physical lenses in the aggregation and quasi-reconstruction of neuronal activity. Data-driven evidence backing the identification of regions of interest is then demonstrated, establishing the relative superiority of the method over neuroscience conventions within comparable contexts.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
设计一种具有神经元簇分辨率的超轻型无透镜荧光成像设备的数据处理管道
为了实现揭示大脑内部运作的目标,各种成像技术一直是研究的主题。突出的技术包括基于转基因动物通过荧光指示剂发出神经元活动信号的能力的设备。本文研究了一种独创的超轻型针型装置在荧光神经成像中的应用。提出了一种可推广的数据处理流水线来补偿无透镜器件图像分辨率的降低。特别是,以基线诱导降噪和主成分分析为中心的模块化解决方案被设计为神经元活动聚集和准重建中物理透镜的替代方案。然后,证明了支持识别感兴趣区域的数据驱动证据,确立了该方法在可比环境下相对于神经科学惯例的相对优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.00
自引率
22.20%
发文量
101
期刊介绍: Artificial Life and Robotics is an international journal publishing original technical papers and authoritative state-of-the-art reviews on the development of new technologies concerning artificial life and robotics, especially computer-based simulation and hardware for the twenty-first century. This journal covers a broad multidisciplinary field, including areas such as artificial brain research, artificial intelligence, artificial life, artificial living, artificial mind research, brain science, chaos, cognitive science, complexity, computer graphics, evolutionary computations, fuzzy control, genetic algorithms, innovative computations, intelligent control and modelling, micromachines, micro-robot world cup soccer tournament, mobile vehicles, neural networks, neurocomputers, neurocomputing technologies and applications, robotics, robus virtual engineering, and virtual reality. Hardware-oriented submissions are particularly welcome. Publishing body: International Symposium on Artificial Life and RoboticsEditor-in-Chiei: Hiroshi Tanaka Hatanaka R Apartment 101, Hatanaka 8-7A, Ooaza-Hatanaka, Oita city, Oita, Japan 870-0856 ©International Symposium on Artificial Life and Robotics
期刊最新文献
AI robots pioneer the Smarter Inclusive Society Research on coordinated control strategy of distributed static synchronous series compensator based on multi-objective optimization immune algorithm Probabilistic model for high-level intention estimation and trajectory prediction in urban environments Preservation of emotional context in tweet embeddings on social networking sites Spiking neural networks-based generation of caterpillar-like soft robot crawling motions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1