{"title":"Disentangling the direct and indirect effects of canopy and understory vegetation on the foraging habitat selection of the brown bear Ursus arctos","authors":"K. Tomita, T. Hiura","doi":"10.2981/wlb.00886","DOIUrl":null,"url":null,"abstract":"Elucidating the factors affecting the foraging habitat selection of wildlife can further our understanding of the animal–habitat relationships and inform wildlife conservation and management. Canopy and understory vegetation may directly or indirectly affect the foraging habitat selection of carnivores through changes in habitat structure and prey availability, respectively; however, the relative importance of these two effects remains largely unknown. Dwarf bamboo Sasa kurilensis is a predominant understory plant that suppresses regeneration in the forests of northern Japan. The purpose of this study was to disentangle the direct and indirect effects of canopy forest type Larix kaempferi plantation versus natural mixed forest) and dwarf bamboo on foraging habitat selection of a large carnivore, the brown bear Ursus arctos. In the Shiretoko World Heritage, brown bears dig for cicada nymphs during summer. We evaluated the frequency of brown bear foraging on cicadas by investigating traces of digging for cicada nymphs. A structural equation model was used to statistically disentangle the direct and indirect effects of vegetation. Our results demonstrated that canopy and understory vegetation directly and indirectly affected foraging habitat selection of brown bears. Dwarf bamboo negatively affected cicada nymph density, which positively affected brown bear digging. This suggests that dwarf bamboo also had indirect negative effects on brown bears. Forest type had significant direct and indirect effects via change in cicada nymph density on foraging behavior in brown bears. Forestry managers in northern Japan, including the study site, try to remove dwarf bamboo for assisting natural regeneration. Removal of dwarf bamboo by scarification might not only promote natural regeneration, but also provide a beneficial foraging habitat for bears.","PeriodicalId":54405,"journal":{"name":"Wildlife Biology","volume":"2021 1","pages":"wlb.00886"},"PeriodicalIF":1.7000,"publicationDate":"2021-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wildlife Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2981/wlb.00886","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 2
Abstract
Elucidating the factors affecting the foraging habitat selection of wildlife can further our understanding of the animal–habitat relationships and inform wildlife conservation and management. Canopy and understory vegetation may directly or indirectly affect the foraging habitat selection of carnivores through changes in habitat structure and prey availability, respectively; however, the relative importance of these two effects remains largely unknown. Dwarf bamboo Sasa kurilensis is a predominant understory plant that suppresses regeneration in the forests of northern Japan. The purpose of this study was to disentangle the direct and indirect effects of canopy forest type Larix kaempferi plantation versus natural mixed forest) and dwarf bamboo on foraging habitat selection of a large carnivore, the brown bear Ursus arctos. In the Shiretoko World Heritage, brown bears dig for cicada nymphs during summer. We evaluated the frequency of brown bear foraging on cicadas by investigating traces of digging for cicada nymphs. A structural equation model was used to statistically disentangle the direct and indirect effects of vegetation. Our results demonstrated that canopy and understory vegetation directly and indirectly affected foraging habitat selection of brown bears. Dwarf bamboo negatively affected cicada nymph density, which positively affected brown bear digging. This suggests that dwarf bamboo also had indirect negative effects on brown bears. Forest type had significant direct and indirect effects via change in cicada nymph density on foraging behavior in brown bears. Forestry managers in northern Japan, including the study site, try to remove dwarf bamboo for assisting natural regeneration. Removal of dwarf bamboo by scarification might not only promote natural regeneration, but also provide a beneficial foraging habitat for bears.
期刊介绍:
WILDLIFE BIOLOGY is a high-quality scientific forum directing concise and up-to-date information to scientists, administrators, wildlife managers and conservationists. The journal encourages and welcomes original papers, short communications and reviews written in English from throughout the world. The journal accepts theoretical, empirical, and practical articles of high standard from all areas of wildlife science with the primary task of creating the scientific basis for the enhancement of wildlife management practices. Our concept of ''wildlife'' mainly includes mammal and bird species, but studies on other species or phenomena relevant to wildlife management are also of great interest. We adopt a broad concept of wildlife management, including all structures and actions with the purpose of conservation, sustainable use, and/or control of wildlife and its habitats, in order to safeguard sustainable relationships between wildlife and other human interests.