Developing a personalized remote patient monitoring algorithm: a proof-of-concept in heart failure.

IF 3.9 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS European heart journal. Digital health Pub Date : 2023-08-23 eCollection Date: 2023-12-01 DOI:10.1093/ehjdh/ztad049
Mehran Moazeni, Lieke Numan, Maaike Brons, Jaco Houtgraaf, Frans H Rutten, Daniel L Oberski, Linda W van Laake, Folkert W Asselbergs, Emmeke Aarts
{"title":"Developing a personalized remote patient monitoring algorithm: a proof-of-concept in heart failure.","authors":"Mehran Moazeni, Lieke Numan, Maaike Brons, Jaco Houtgraaf, Frans H Rutten, Daniel L Oberski, Linda W van Laake, Folkert W Asselbergs, Emmeke Aarts","doi":"10.1093/ehjdh/ztad049","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>Non-invasive remote patient monitoring is an increasingly popular technique to aid clinicians in the early detection of worsening heart failure (HF) alongside regular follow-ups. However, previous studies have shown mixed results in the performance of such systems. Therefore, we developed and evaluated a personalized monitoring algorithm aimed at increasing positive-predictive-value (PPV) (i.e. alarm quality) and compared performance with simple rule-of-thumb and moving average convergence-divergence algorithms (MACD).</p><p><strong>Methods and results: </strong>In this proof-of-concept study, the developed algorithm was applied to retrospective data of daily bodyweight, heart rate, and systolic blood pressure of 74 HF-patients with a median observation period of 327 days (IQR: 183 days), during which 31 patients experienced 64 clinical worsening HF episodes. The algorithm combined information on both the monitored patients and a group of stable HF patients, and is increasingly personalized over time, using linear mixed-effect modelling and statistical process control charts. Optimized on alarm quality, heart rate showed the highest PPV (Personalized: 92%, MACD: 2%, Rule-of-thumb: 7%) with an F1 score of (Personalized: 28%, MACD: 6%, Rule-of-thumb: 8%). Bodyweight demonstrated the lowest PPV (Personalized: 16%, MACD: 0%, Rule-of-thumb: 6%) and F1 score (Personalized: 10%, MACD: 3%, Rule-of-thumb: 7%) overall compared methods.</p><p><strong>Conclusion: </strong>The personalized algorithm with flexible patient-tailored thresholds led to higher PPV, and performance was more sensitive compared to common simple monitoring methods (rule-of-thumb and MACD). However, many episodes of worsening HF remained undetected. Heart rate and systolic blood pressure monitoring outperformed bodyweight in predicting worsening HF. The algorithm source code is publicly available for future validation and improvement.</p>","PeriodicalId":72965,"journal":{"name":"European heart journal. Digital health","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10689918/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European heart journal. Digital health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ehjdh/ztad049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Aims: Non-invasive remote patient monitoring is an increasingly popular technique to aid clinicians in the early detection of worsening heart failure (HF) alongside regular follow-ups. However, previous studies have shown mixed results in the performance of such systems. Therefore, we developed and evaluated a personalized monitoring algorithm aimed at increasing positive-predictive-value (PPV) (i.e. alarm quality) and compared performance with simple rule-of-thumb and moving average convergence-divergence algorithms (MACD).

Methods and results: In this proof-of-concept study, the developed algorithm was applied to retrospective data of daily bodyweight, heart rate, and systolic blood pressure of 74 HF-patients with a median observation period of 327 days (IQR: 183 days), during which 31 patients experienced 64 clinical worsening HF episodes. The algorithm combined information on both the monitored patients and a group of stable HF patients, and is increasingly personalized over time, using linear mixed-effect modelling and statistical process control charts. Optimized on alarm quality, heart rate showed the highest PPV (Personalized: 92%, MACD: 2%, Rule-of-thumb: 7%) with an F1 score of (Personalized: 28%, MACD: 6%, Rule-of-thumb: 8%). Bodyweight demonstrated the lowest PPV (Personalized: 16%, MACD: 0%, Rule-of-thumb: 6%) and F1 score (Personalized: 10%, MACD: 3%, Rule-of-thumb: 7%) overall compared methods.

Conclusion: The personalized algorithm with flexible patient-tailored thresholds led to higher PPV, and performance was more sensitive compared to common simple monitoring methods (rule-of-thumb and MACD). However, many episodes of worsening HF remained undetected. Heart rate and systolic blood pressure monitoring outperformed bodyweight in predicting worsening HF. The algorithm source code is publicly available for future validation and improvement.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
开发个性化远程患者监测算法:心力衰竭的概念验证
无创远程患者监测是一种越来越流行的技术,可以帮助临床医生在定期随访的同时早期发现恶化的心力衰竭(HF)。然而,先前的研究表明,这种系统的性能参差不齐。因此,我们开发并评估了一种旨在提高正预测值(PPV)(即警报质量)的个性化监测算法,并将其性能与简单经验法则和移动平均收敛-发散算法(MACD)进行了比较。在这项概念验证研究中,将所开发的算法应用于74名HF患者的每日体重、心率和收缩压的回顾性数据,中位观察期为327天(IQR:183天),其中31名患者经历了64次临床恶化HF发作。该算法结合了监测患者和一组稳定HF患者的信息,并随着时间的推移越来越个性化,使用线性混合效应建模和统计过程控制图(SPC)。在警报质量上进行优化后,心率显示出最高的PPV(个性化:92%,MACD:2%,经验法则:7%),F1得分为(个性化:28%,MACD:6%,经验准则:8%)。在所有比较方法中,体重表现出最低的PPV(个性化:16%,MACD:0%,经验法则:6%)和F1得分(个性化:10%,MACD:3%,经验准则:7%)。与常见的简单监测方法(经验法则和MACD)相比,具有灵活的患者定制阈值的个性化算法导致更高的PPV,并且性能更敏感。然而,许多HF恶化的发作仍未被发现。心率和收缩压监测在预测HF恶化方面优于体重。算法源代码可公开用于未来的验证和改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.00
自引率
0.00%
发文量
0
期刊最新文献
Correction to: The association of electronic health literacy with behavioural and psychological coronary artery disease risk factors in patients after percutaneous coronary intervention: a 12-month follow-up study. Prospects for artificial intelligence-enhanced electrocardiogram as a unified screening tool for cardiac and non-cardiac conditions: an explorative study in emergency care. Unlocking the potential of artificial intelligence in electrocardiogram biometrics: age-related changes, anomaly detection, and data authenticity in mobile health platforms. Hypertrophic cardiomyopathy detection with artificial intelligence electrocardiography in international cohorts: an external validation study. Development and validation of risk prediction model for recurrent cardiovascular events among Chinese: the Personalized CARdiovascular DIsease risk Assessment for Chinese model.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1