Simon Marynissen, J. Heyninck, B. Bogaerts, M. Denecker
{"title":"On Nested Justification Systems","authors":"Simon Marynissen, J. Heyninck, B. Bogaerts, M. Denecker","doi":"10.1017/S1471068422000266","DOIUrl":null,"url":null,"abstract":"Abstract Justification theory is a general framework for the definition of semantics of rule-based languages that has a high explanatory potential. Nested justification systems, first introduced by Denecker et al., allow for the composition of justification systems. This notion of nesting thus enables the modular definition of semantics of rule-based languages, and increases the representational capacities of justification theory. As we show in this paper, the original characterization of semantics for nested justification systems leads to the loss of information relevant for explanations. In view of this problem, we provide an alternative characterization of their semantics and show that it is equivalent to the original one. Furthermore, we show how nested justification systems allow representing fixpoint definitions.","PeriodicalId":49436,"journal":{"name":"Theory and Practice of Logic Programming","volume":"22 1","pages":"641 - 657"},"PeriodicalIF":1.4000,"publicationDate":"2022-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory and Practice of Logic Programming","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1017/S1471068422000266","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract Justification theory is a general framework for the definition of semantics of rule-based languages that has a high explanatory potential. Nested justification systems, first introduced by Denecker et al., allow for the composition of justification systems. This notion of nesting thus enables the modular definition of semantics of rule-based languages, and increases the representational capacities of justification theory. As we show in this paper, the original characterization of semantics for nested justification systems leads to the loss of information relevant for explanations. In view of this problem, we provide an alternative characterization of their semantics and show that it is equivalent to the original one. Furthermore, we show how nested justification systems allow representing fixpoint definitions.
期刊介绍:
Theory and Practice of Logic Programming emphasises both the theory and practice of logic programming. Logic programming applies to all areas of artificial intelligence and computer science and is fundamental to them. Among the topics covered are AI applications that use logic programming, logic programming methodologies, specification, analysis and verification of systems, inductive logic programming, multi-relational data mining, natural language processing, knowledge representation, non-monotonic reasoning, semantic web reasoning, databases, implementations and architectures and constraint logic programming.