Wassef Al-Khatib, M. Srour, H. Bazzi, Chaden Haidar, A. Hijazi, A. E. Al-Rekaby, Wassim El Malti
{"title":"Test of elimination of cadmium and lead ions from water using polyurethane loaded with Cymbopogon citratus activated carbon","authors":"Wassef Al-Khatib, M. Srour, H. Bazzi, Chaden Haidar, A. Hijazi, A. E. Al-Rekaby, Wassim El Malti","doi":"10.1080/10889868.2022.2054928","DOIUrl":null,"url":null,"abstract":"Abstract The elimination of heavy metals from industrial and agricultural wastewater became a challenging environmental topic due to their health hazards. Adsorption is one of the physicochemical techniques that proved its effectiveness in removing inorganic pollutants at low concentrations. Polymer-based composites using inorganic fillers have received increased attention due to their adsorptive properties. In addition, loaded/modified polyurethane foams have been effectively tested in removing heavy metals from polluted water. In this work, activated carbon derived from valorized Cymbopogon citratus (lemongrass) was synthesized by simple pyrolysis and activation with hydrogen peroxide and used as a filler in the polyurethane foam. The characteristics and properties of the prepared activated carbon were assessed using several methods and techniques. The cost-effective activated carbon-loaded polyurethane was synthesized in a straightforward step in the shape of pellets and used to eliminate lead (II) and cadmium (II) ions from water. It demonstrated a significant adsorption capacity even after one filtration. Furthermore, the effects of the adsorbate concentration and the number of filtrations were investigated. Highlights Cymbopogon citratus plant was valorized. Cost-effective C. citratus activated carbon-Loaded polyurethane foams were prepared to remove Cd2+ and Pb2+ from water. High removal efficiency was obtained using 150 mg/L metal ion solutions after one filtration.","PeriodicalId":8935,"journal":{"name":"Bioremediation Journal","volume":"27 1","pages":"301 - 310"},"PeriodicalIF":1.9000,"publicationDate":"2022-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioremediation Journal","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/10889868.2022.2054928","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The elimination of heavy metals from industrial and agricultural wastewater became a challenging environmental topic due to their health hazards. Adsorption is one of the physicochemical techniques that proved its effectiveness in removing inorganic pollutants at low concentrations. Polymer-based composites using inorganic fillers have received increased attention due to their adsorptive properties. In addition, loaded/modified polyurethane foams have been effectively tested in removing heavy metals from polluted water. In this work, activated carbon derived from valorized Cymbopogon citratus (lemongrass) was synthesized by simple pyrolysis and activation with hydrogen peroxide and used as a filler in the polyurethane foam. The characteristics and properties of the prepared activated carbon were assessed using several methods and techniques. The cost-effective activated carbon-loaded polyurethane was synthesized in a straightforward step in the shape of pellets and used to eliminate lead (II) and cadmium (II) ions from water. It demonstrated a significant adsorption capacity even after one filtration. Furthermore, the effects of the adsorbate concentration and the number of filtrations were investigated. Highlights Cymbopogon citratus plant was valorized. Cost-effective C. citratus activated carbon-Loaded polyurethane foams were prepared to remove Cd2+ and Pb2+ from water. High removal efficiency was obtained using 150 mg/L metal ion solutions after one filtration.
期刊介绍:
Bioremediation Journal is a peer-reviewed quarterly that publishes current, original laboratory and field research in bioremediation, the use of biological and supporting physical treatments to treat contaminated soil and groundwater. The journal rapidly disseminates new information on emerging and maturing bioremediation technologies and integrates scientific research and engineering practices. The authors, editors, and readers are scientists, field engineers, site remediation managers, and regulatory experts from the academic, industrial, and government sectors worldwide.
High-quality, original articles make up the primary content. Other contributions are technical notes, short communications, and occasional invited review articles.