Linguistic traits as heritable units? Spatial Bayesian clustering reveals Swiss German dialect regions

Noemi Romano, P. Ranacher, Sandro Bachmann, S. Joost
{"title":"Linguistic traits as heritable units? Spatial Bayesian clustering reveals Swiss German dialect regions","authors":"Noemi Romano, P. Ranacher, Sandro Bachmann, S. Joost","doi":"10.1017/jlg.2021.12","DOIUrl":null,"url":null,"abstract":"Abstract In the early 2000s, the SADS, an extensive linguistic atlas project, surveyed more than three thousand individuals across German-speaking Switzerland on over two hundred linguistic variants, capturing the morphosyntactic variation in Swiss German. In this paper, we applied TESS, a Bayesian clustering method from evolutionary biology to the SADS to infer population structure, building on parallels between biology and linguistics that have recently been illustrated theoretically and explored experimentally. We tested three clustering models with different spatial assumptions: a nonspatial model, a spatial trend model with a spatial gradient, and a spatial full-trend model with both a spatial gradient and spatial-autocorrelation. Results reveal five distinct morphosyntactic populations, four of which correspond to traditional Swiss German dialect regions and one of which corresponds to a base population. Moreover, the spatial trend model outperforms the nonspatial model, suggesting a gradual transition of morphosyntax and supporting the idea of a Swiss German dialect continuum.","PeriodicalId":93207,"journal":{"name":"Journal of linguistic geography","volume":"10 1","pages":"11 - 22"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of linguistic geography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/jlg.2021.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract In the early 2000s, the SADS, an extensive linguistic atlas project, surveyed more than three thousand individuals across German-speaking Switzerland on over two hundred linguistic variants, capturing the morphosyntactic variation in Swiss German. In this paper, we applied TESS, a Bayesian clustering method from evolutionary biology to the SADS to infer population structure, building on parallels between biology and linguistics that have recently been illustrated theoretically and explored experimentally. We tested three clustering models with different spatial assumptions: a nonspatial model, a spatial trend model with a spatial gradient, and a spatial full-trend model with both a spatial gradient and spatial-autocorrelation. Results reveal five distinct morphosyntactic populations, four of which correspond to traditional Swiss German dialect regions and one of which corresponds to a base population. Moreover, the spatial trend model outperforms the nonspatial model, suggesting a gradual transition of morphosyntax and supporting the idea of a Swiss German dialect continuum.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
作为可遗传单位的语言特征?空间贝叶斯聚类揭示瑞士德语方言区域
摘要在21世纪初,SADS是一个广泛的语言图谱项目,它调查了瑞士德语区3000多人的200多种语言变体,捕捉到了瑞士德语的形态句法变化。在本文中,我们将TESS(一种从进化生物学到SADS的贝叶斯聚类方法)应用于推断种群结构,建立在生物学和语言学之间的相似性之上,这些相似性最近在理论上得到了说明,并在实验上得到了探索。我们测试了三个具有不同空间假设的聚类模型:非空间模型、具有空间梯度的空间趋势模型和同时具有空间梯度和空间自相关的空间全趋势模型。结果揭示了五个不同的形态句法群体,其中四个对应于传统的瑞士-德国方言区,一个对应于基本群体。此外,空间趋势模型优于非空间模型,表明形态句法的逐渐转变,并支持瑞士-德国方言连续体的想法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Corpus-based dialectometry with topic models Linguistic tug-of-war: regional perceptions of Ukrainian Detecting linguistic variation with geographic sampling Broad, strong, and soft: Using geospatial analysis to understand folk-linguistic terminology Perceptions of regional origin and social attributes of phonetic variants used in Iberian Spanish
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1