D. Berry, N. McHugh, E. Wall, K. McDermott, A. O'Brien
{"title":"Low-density genotype panel for both parentage verification and discovery in a multi-breed sheep population","authors":"D. Berry, N. McHugh, E. Wall, K. McDermott, A. O'Brien","doi":"10.2478/ijafr-2019-0001","DOIUrl":null,"url":null,"abstract":"Abstract The generally low usage of artificial insemination and single-sire mating in sheep, compounded by mob lambing (and lambing outdoors), implies that parentage assignment in sheep is challenging. The objective here was to develop a low-density panel of single nucleotide polymorphisms (SNPs) for accurate parentage verification and discovery in sheep. Of particular interest was where SNP selection was limited to only a subset of chromosomes, thereby eliminating the ability to accurately impute genome-wide denser marker panels. Data used consisted of 10,933 candidate SNPs on 9,390 purebred sheep. These data consisted of 1,876 validated genotyped sire–offspring pairs and 2,784 validated genotyped dam–offspring pairs. The SNP panels developed consisted of 87 SNPs to 500 SNPs. Parentage verification and discovery were undertaken using 1) exclusion, based on the sharing of at least one allele between candidate parent–offspring pairs, and 2) a likelihood-based approach. Based on exclusion, allowing for one discordant offspring–parent genotype, a minimum of 350 SNPs was required when the goal was to unambiguously identify the true sire or dam from all possible candidates. Results suggest that, if selecting SNPs across the entire genome, a minimum of 250 carefully selected SNPs are required to ensure that the most likely selected parent (based on the likelihood approach) was, in fact, the true parent. If restricting the SNPs to just a subset of chromosomes, the recommendation is to use at least a 300-SNP panel from at least six chromosomes, with approximately an equal number of SNPs per chromosome.","PeriodicalId":14659,"journal":{"name":"Irish Journal of Agricultural and Food Research","volume":"58 1","pages":"1 - 12"},"PeriodicalIF":0.9000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2478/ijafr-2019-0001","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Irish Journal of Agricultural and Food Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.2478/ijafr-2019-0001","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 6
Abstract
Abstract The generally low usage of artificial insemination and single-sire mating in sheep, compounded by mob lambing (and lambing outdoors), implies that parentage assignment in sheep is challenging. The objective here was to develop a low-density panel of single nucleotide polymorphisms (SNPs) for accurate parentage verification and discovery in sheep. Of particular interest was where SNP selection was limited to only a subset of chromosomes, thereby eliminating the ability to accurately impute genome-wide denser marker panels. Data used consisted of 10,933 candidate SNPs on 9,390 purebred sheep. These data consisted of 1,876 validated genotyped sire–offspring pairs and 2,784 validated genotyped dam–offspring pairs. The SNP panels developed consisted of 87 SNPs to 500 SNPs. Parentage verification and discovery were undertaken using 1) exclusion, based on the sharing of at least one allele between candidate parent–offspring pairs, and 2) a likelihood-based approach. Based on exclusion, allowing for one discordant offspring–parent genotype, a minimum of 350 SNPs was required when the goal was to unambiguously identify the true sire or dam from all possible candidates. Results suggest that, if selecting SNPs across the entire genome, a minimum of 250 carefully selected SNPs are required to ensure that the most likely selected parent (based on the likelihood approach) was, in fact, the true parent. If restricting the SNPs to just a subset of chromosomes, the recommendation is to use at least a 300-SNP panel from at least six chromosomes, with approximately an equal number of SNPs per chromosome.
期刊介绍:
The Irish Journal of Agricultural and Food Research is a peer reviewed open access scientific journal published by Teagasc (Agriculture and Food Development Authority, Ireland). Manuscripts on any aspect of research of direct relevance to Irish agriculture and food production, including plant and animal sciences, food science, agri environmental science, soils, engineering, buildings, economics and sociology, will be considered for publication. The work must demonstrate novelty and relevance to the field of research. Papers published or offered for publication elsewhere will not be considered, but the publication of an abstract does not preclude the publication of the full paper in this journal.