Samuel T. Consolvo, N. Stark, B. Castellanos, C. Castro-Bolinaga, Steven Hall, G. Massey
{"title":"Effects of Shell Hash on Friction Angles of Surficial Seafloor Sediments near Oysters","authors":"Samuel T. Consolvo, N. Stark, B. Castellanos, C. Castro-Bolinaga, Steven Hall, G. Massey","doi":"10.1061/(asce)ww.1943-5460.0000716","DOIUrl":null,"url":null,"abstract":"Oysters are hypothesized to affect the shear strength of nearby surficial seafloor sediment as fragments of oyster shells (shell hash) are typically more angular relative to sand particles alone, among other differences. Resistance to shearing is well characterized by the friction angle, which is estimated in this study from vacuum triaxial laboratory and portable free-fall penetrometer field tests. Friction angles of sediment with shell hash were higher relative to those of sediment without shell hash (via hydrochloric acid treatment) on average by about 19% (36.0°–30.2°, respectively). Triaxial confining pressures ranged between 2.1 and 49.0 kPa to simulate subtidal and intertidal aquatic conditions. Regularity (average of particle roundness and sphericity) values of sediment samples with shell hash were found to be less than those of samples without by about 6% (0.66 and 0.70, respectively), which indicates the particle shapes of the former are, overall, more angular and less spherical. Further study and methodology improvements are needed to decrease the approximate 9° friction angle discrepancy estimated from fieldand laboratory-based tests. Knowing oysters have the potential to increase sediment shearing resistance helps establish a pathway of how shellfish colonies may contribute to mitigating surficial erosion around coastal infrastructure. DOI: 10.1061/(ASCE)WW.1943-5460.0000716. This work is made available under the terms of the Creative Commons Attribution 4.0 International license, https://creativecommons.org/licenses/by/4.0/.","PeriodicalId":54367,"journal":{"name":"Journal of Waterway Port Coastal and Ocean Engineering","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Waterway Port Coastal and Ocean Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1061/(asce)ww.1943-5460.0000716","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 1
Abstract
Oysters are hypothesized to affect the shear strength of nearby surficial seafloor sediment as fragments of oyster shells (shell hash) are typically more angular relative to sand particles alone, among other differences. Resistance to shearing is well characterized by the friction angle, which is estimated in this study from vacuum triaxial laboratory and portable free-fall penetrometer field tests. Friction angles of sediment with shell hash were higher relative to those of sediment without shell hash (via hydrochloric acid treatment) on average by about 19% (36.0°–30.2°, respectively). Triaxial confining pressures ranged between 2.1 and 49.0 kPa to simulate subtidal and intertidal aquatic conditions. Regularity (average of particle roundness and sphericity) values of sediment samples with shell hash were found to be less than those of samples without by about 6% (0.66 and 0.70, respectively), which indicates the particle shapes of the former are, overall, more angular and less spherical. Further study and methodology improvements are needed to decrease the approximate 9° friction angle discrepancy estimated from fieldand laboratory-based tests. Knowing oysters have the potential to increase sediment shearing resistance helps establish a pathway of how shellfish colonies may contribute to mitigating surficial erosion around coastal infrastructure. DOI: 10.1061/(ASCE)WW.1943-5460.0000716. This work is made available under the terms of the Creative Commons Attribution 4.0 International license, https://creativecommons.org/licenses/by/4.0/.
期刊介绍:
The Journal of Waterway, Port, Coastal, and Ocean Engineering disseminates to the profession engineering and scientific advances made in the COPRI disciplines. The journal is a strong forum for civil engineering disciplines related to ocean, coastal and riverine waters as well as the interaction of these waters and the adjacent built and natural environments. This broad scope makes the Journal an ideal choice for the publication and dissemination of archival contributions dealing with important related topics. Topics include dredging, floods, sediment transport, tides, wind waves and storm surge, tsunamis, climate change, rising sea level, extreme weather events and other hazards that affect shorelines, waterways, estuaries, and ports and harbors, as well as efforts to mitigate the impact of such hazards. Of equal interest is the development and operation of offshore facilities and ocean resource utilization, such as renewable energy and ocean mining. Types of publications include original journal articles, comprehensive review articles, short technical notes, case studies of special interest to the readership, book reviews, and special issues on selected topics.