Marija Čarapić, B. Marković, Milena Pavlović, D. Agbaba, K. Nikolić
{"title":"Comparative study of performances of UHPLC-MS/MS and HPLC/UV methods for analysis of ziprasidone and its main impurities","authors":"Marija Čarapić, B. Marković, Milena Pavlović, D. Agbaba, K. Nikolić","doi":"10.1556/1326.2022.01060","DOIUrl":null,"url":null,"abstract":"\n Ziprasidone is the second generation antipsychotic drug with unique multipotent G-protein-coupled (GPCR) receptor binding profile. Since ziprasidone is a highly lipophilic and unstable compound, development of efficient method for a concurrent assay of ziprasidone and its main impurities was a very challenging task.\n The UHPLC-MS/MS method that we developed for simultaneous determination of ziprasidone and its main impurities (BITP, Chloroethyl-chloroindolinone, Zip-oxide, Zip-dimer, and Zip-BIT) was compared with some other related HPLC-UV methods of our own and other authorship. An increase of the mobile phase pH value from 2.5 to 4.7 units in the examined analytical methods influenced elution order of the investigated compounds. It was found out that the UHPLC-MS/MS method is more selective and sensitive than the earlier developed HPLC-UV method. Similar to our earlier HPLC-UV method, the UHPLC-MS/MS method is linear with a correlation coefficient (r) above 0.99 for all the analysed compounds, but with a negligibly lower precision and accuracy. Finally, with shorter analysis time, smaller column size and reduction of solvent consumption, UHPLC-MS/MS is assumed as a greener method than HPLC-UV for the ziprasidone purity assay.\n After transfer of the UHPLC-MS/MS method to the UHPLC-DAD system, suitability of the UHPLC-DAD method for routine control of ziprasidone and its main impurities is examined and confirmed based on the retained good selectivity, resolution and short analysis time.","PeriodicalId":7130,"journal":{"name":"Acta Chromatographica","volume":"1 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2022-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Chromatographica","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1556/1326.2022.01060","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 1
Abstract
Ziprasidone is the second generation antipsychotic drug with unique multipotent G-protein-coupled (GPCR) receptor binding profile. Since ziprasidone is a highly lipophilic and unstable compound, development of efficient method for a concurrent assay of ziprasidone and its main impurities was a very challenging task.
The UHPLC-MS/MS method that we developed for simultaneous determination of ziprasidone and its main impurities (BITP, Chloroethyl-chloroindolinone, Zip-oxide, Zip-dimer, and Zip-BIT) was compared with some other related HPLC-UV methods of our own and other authorship. An increase of the mobile phase pH value from 2.5 to 4.7 units in the examined analytical methods influenced elution order of the investigated compounds. It was found out that the UHPLC-MS/MS method is more selective and sensitive than the earlier developed HPLC-UV method. Similar to our earlier HPLC-UV method, the UHPLC-MS/MS method is linear with a correlation coefficient (r) above 0.99 for all the analysed compounds, but with a negligibly lower precision and accuracy. Finally, with shorter analysis time, smaller column size and reduction of solvent consumption, UHPLC-MS/MS is assumed as a greener method than HPLC-UV for the ziprasidone purity assay.
After transfer of the UHPLC-MS/MS method to the UHPLC-DAD system, suitability of the UHPLC-DAD method for routine control of ziprasidone and its main impurities is examined and confirmed based on the retained good selectivity, resolution and short analysis time.
期刊介绍:
Acta Chromatographica
Open Access
Acta Chromatographica publishes peer-reviewed scientific articles on every field of chromatography, including theory of chromatography; progress in synthesis and characterization of new stationary phases; chromatography of organic, inorganic and complex compounds; enantioseparation and chromatography of chiral compounds; applications of chromatography in biology, pharmacy, medicine, and food analysis; environmental applications of chromatography; analytical and physico-chemical aspects of sample preparation for chromatography; hyphenated and combined techniques; chemometrics and its applications in separation science.