Shangbin Liu, Yongxin Wang, Huaifeng Sun, Yang Yang
{"title":"Asynchronous MMC PSA inversion of transient electromagnetic data","authors":"Shangbin Liu, Yongxin Wang, Huaifeng Sun, Yang Yang","doi":"10.1080/08123985.2022.2027730","DOIUrl":null,"url":null,"abstract":"This paper focuses on low computational efficiency in simulated annealing (SA) inversion of Transient Electromagnetic (TEM) data. Asynchronous multiple Markov chains (MMC) parallel strategy is a very promising SA acceleration method, which can be accelerated almost linearly. However, this method also reduces the accuracy of the solution. To overcome this problem, we added the solution set strategy to the asynchronous MMC parallel simulated annealing (PSA) algorithm for the first time. In this new algorithm, each thread independently searches for direction and exchanges data with the solution set in the shared memory. We used both the synthetic and field data to test the new algorithm. The synthetic data tests showed that the MMC PSA results are better than those of the original MMC PSA. We analyzed the efficiency of the new algorithm. Compared with the sequential VFSA, the maximum speedup of the new algorithm is approximately 10 times. The field data test also showed that the improved MMC PSA algorithm has good practicability. These tests demonstrate that the improved algorithm is effective, showing that its convergence speed is greatly improved without reducing the accuracy.","PeriodicalId":50460,"journal":{"name":"Exploration Geophysics","volume":"53 1","pages":"602 - 619"},"PeriodicalIF":0.6000,"publicationDate":"2022-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Exploration Geophysics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/08123985.2022.2027730","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper focuses on low computational efficiency in simulated annealing (SA) inversion of Transient Electromagnetic (TEM) data. Asynchronous multiple Markov chains (MMC) parallel strategy is a very promising SA acceleration method, which can be accelerated almost linearly. However, this method also reduces the accuracy of the solution. To overcome this problem, we added the solution set strategy to the asynchronous MMC parallel simulated annealing (PSA) algorithm for the first time. In this new algorithm, each thread independently searches for direction and exchanges data with the solution set in the shared memory. We used both the synthetic and field data to test the new algorithm. The synthetic data tests showed that the MMC PSA results are better than those of the original MMC PSA. We analyzed the efficiency of the new algorithm. Compared with the sequential VFSA, the maximum speedup of the new algorithm is approximately 10 times. The field data test also showed that the improved MMC PSA algorithm has good practicability. These tests demonstrate that the improved algorithm is effective, showing that its convergence speed is greatly improved without reducing the accuracy.
期刊介绍:
Exploration Geophysics is published on behalf of the Australian Society of Exploration Geophysicists (ASEG), Society of Exploration Geophysics of Japan (SEGJ), and Korean Society of Earth and Exploration Geophysicists (KSEG).
The journal presents significant case histories, advances in data interpretation, and theoretical developments resulting from original research in exploration and applied geophysics. Papers that may have implications for field practice in Australia, even if they report work from other continents, will be welcome. ´Exploration and applied geophysics´ will be interpreted broadly by the editors, so that geotechnical and environmental studies are by no means precluded.
Papers are expected to be of a high standard. Exploration Geophysics uses an international pool of reviewers drawn from industry and academic authorities as selected by the editorial panel.
The journal provides a common meeting ground for geophysicists active in either field studies or basic research.